Серия процессоров intel core 2 duo. Процессоры. Время работы от батарей

Дата выпуска продукта.

Литография

Литография указывает на полупроводниковую технологию, используемую для производства интегрированных наборов микросхем и отчет показывается в нанометре (нм), что указывает на размер функций, встроенных в полупроводник.

Условия использования

Условия использования - это факторы окружающей среды и эксплуатационные характеристики, соответствующие должному использованию системы.
Для получения информации об условиях использования, относящихся к конкретному SKU, см. отчет PRQ .
Текущую информацию об условиях использования см. в материалах Intel UC (сайт соглашения о неразглашении информации)*.

Количество ядер

Количество ядер - это термин аппаратного обеспечения, описывающий число независимых центральных модулей обработки в одном вычислительном компоненте (кристалл).

Базовая тактовая частота процессора

Базовая частота процессора - это скорость открытия/закрытия транзисторов процессора. Базовая частота процессора является рабочей точкой, где задается расчетная мощность (TDP). Частота измеряется в гигагерцах (ГГц) или миллиардах вычислительных циклов в секунду.

Кэш-память

Кэш-память процессора - это область быстродействующей памяти, расположенная в процессоре. Интеллектуальная кэш-память Intel® Smart Cache указывает на архитектуру, которая позволяет всем ядрам совместно динамически использовать доступ к кэшу последнего уровня.

Частота системной шины

Шина - это подсистема, передающая данные между компонентами компьютера или между компьютерами. В качестве примера можно назвать системную шину (FSB), по которой происходит обмен данными между процессором и блоком контроллеров памяти; интерфейс DMI, который представляет собой соединение "точка-точка" между встроенным контроллером памяти Intel и блоком контроллеров ввода/вывода Intel на системной плате; и интерфейс Quick Path Interconnect (QPI), соединяющий процессор и интегрированный контроллер памяти.

Четность системной шины

Четность системной шины обеспечивает возможность проверки ошибок в данных, отправленных в FSB (системная шина).

Расчетная мощность

Расчетная тепловая мощность (TDP) указывает на среднее значение производительности в ваттах, когда мощность процессора рассеивается (при работе с базовой частотой, когда все ядра задействованы) в условиях сложной нагрузки, определенной Intel. Ознакомьтесь с требованиями к системам терморегуляции, представленными в техническом описании.

Диапазон напряжения VID

Диапазон напряжения VID является индикатором значений минимального и максимального напряжения, на которых процессор должен работать. Процессор обеспечивает взаимодействие VID с VRM (Voltage Regulator Module), что, в свою очередь обеспечивает, правильный уровень напряжения для процессора.

Доступные варианты для встраиваемых систем

Доступные варианты для встраиваемых систем указывают на продукты, обеспечивающие продленную возможность приобретения для интеллектуальных систем и встроенных решений. Спецификация продукции и условия использования представлены в отчете Production Release Qualification (PRQ). Обратитесь к представителю Intel для получения подробной информации.

Поддерживаемые разъемы

Разъемом называется компонент, которые обеспечивает механические и электрические соединения между процессором и материнской платой.

T CASE

Критическая температура - это максимальная температура, допустимая в интегрированном теплораспределителе (IHS) процессора.

Технология Intel® Turbo Boost ‡

Технология Intel® Turbo Boost динамически увеличивает частоту процессора до необходимого уровня, используя разницу между номинальным и максимальным значениями параметров температуры и энергопотребления, что позволяет увеличить эффективность энергопотребления или при необходимости «разогнать» процессор.

Технология Intel® Hyper-Threading ‡

Intel® Hyper-Threading Technology (Intel® HT Technology) обеспечивает два потока обработки для каждого физического ядра. Многопоточные приложения могут выполнять больше задач параллельно, что значительно ускоряет выполнение работы.

Технология виртуализации Intel® (VT-x) ‡

Технология Intel® Virtualization для направленного ввода/вывода (VT-x) позволяет одной аппаратной платформе функционировать в качестве нескольких «виртуальных» платформ. Технология улучшает возможности управления, снижая время простоев и поддерживая продуктивность работы за счет выделения отдельных разделов для вычислительных операций.

Технология виртуализации Intel® для направленного ввода/вывода (VT-d) ‡

Технология Intel® Virtualization Technology для направленного ввода/вывода дополняет поддержку виртуализации в процессорах на базе архитектуры IA-32 (VT-x) и в процессорах Itanium® (VT-i) функциями виртуализации устройств ввода/вывода. Технология Intel® Virtualization для направленного ввода/вывода помогает пользователям увеличить безопасность и надежность систем, а также повысить производительность устройств ввода/вывода в виртуальных средах.

Архитектура Intel® 64 ‡

Архитектура Intel® 64 в сочетании с соответствующим программным обеспечением поддерживает работу 64-разрядных приложений на серверах, рабочих станциях, настольных ПК и ноутбуках.¹ Архитектура Intel® 64 обеспечивает повышение производительности, за счет чего вычислительные системы могут использовать более 4 ГБ виртуальной и физической памяти.

Набор команд

Набор команд содержит базовые команды и инструкции, которые микропроцессор понимает и может выполнять. Показанное значение указывает, с каким набором команд Intel совместим данный процессор.

Состояния простоя

Режим состояния простоя (или C-состояния) используется для энергосбережения, когда процессор бездействует. C0 означает рабочее состояние, то есть ЦПУ в данный момент выполняет полезную работу. C1 - это первое состояние бездействия, С2 - второе состояние бездействия и т.д. Чем выше численный показатель С-состояния, тем больше действий по энергосбережению выполняет программа.

Усовершенствованная технология Intel SpeedStep®

Усовершенствованная технология Intel SpeedStep® позволяет обеспечить высокую производительность, а также соответствие требованиям мобильных систем к энергосбережению. Стандартная технология Intel SpeedStep® позволяет переключать уровень напряжения и частоты в зависимости от нагрузки на процессор. Усовершенствованная технология Intel SpeedStep® построена на той же архитектуре и использует такие стратегии разработки, как разделение изменений напряжения и частоты, а также распределение и восстановление тактового сигнала.

Технология Intel® Demand Based Switching

Intel® Demand Based Switching - это технология управления питанием, в которой прикладное напряжение и тактовая частота микропроцессора удерживаются на минимальном необходимом уровне, пока не потребуется увеличение вычислительной мощности. Эта технология была представлена на серверном рынке под названием Intel SpeedStep®.

Технологии термоконтроля

Технологии термоконтроля защищают корпус процессора и систему от сбоя в результате перегрева с помощью нескольких функций управления температурным режимом. Внутрикристаллический цифровой термодатчик температуры (Digital Thermal Sensor - DTS) определяет температуру ядра, а функции управления температурным режимом при необходимости снижают энергопотребление корпусом процессора, тем самым уменьшая температуру, для обеспечения работы в пределах нормальных эксплуатационных характеристик.

Новые команды Intel® AES

Команды Intel® AES-NI (Intel® AES New Instructions) представляют собой набор команд, позволяющий быстро и безопасно обеспечить шифрование и расшифровку данных. Команды AES-NI могут применяться для решения широкого спектра криптографических задач, например, в приложениях, обеспечивающих групповое шифрование, расшифровку, аутентификацию, генерацию случайных чисел и аутентифицированное шифрование.

Бит отмены выполнения - это аппаратная функция безопасности, которая позволяет уменьшить уязвимость к вирусам и вредоносному коду, а также предотвратить выполнение вредоносного ПО и его распространение на сервере или в сети.

Core 2 Duo и Core 2 Quad, в котором мы пытались выяснить насколько эффективны четырехъядерные процессоры в сравнении с двухъядерными предшественниками. Почти год назад, по итогам тестирования мы констатировали лишь существенное преимущество Core 2 Quad в специализированных программах и редких игровых приложениях. Тогда же был сделан вывод о том, что для геймера оптимальным выбором все еще остается двухъядерный процессор. Но с течением времени произошло множество изменений. Многоядерные процессоры становятся все доступнее, да и количество выпускаемых игр, которые эффективно используют более двух ядер, продолжают увеличиваться (по заверениям разработчиков).

В конечном итоге назрела необходимость нового тестирования, и мы решили подойти к нему с большим размахом и, как говорится, убить сразу несколько зайцев. Для этого были собраны в одном тестировании представители разных ценовых категорий, разных серий процессоров с различных объемом кэш-памяти и количеством ядер. Также сравнили их при работе с одними и теми же параметрами, чтобы выявить непосредственную зависимость производительности в разных приложениях и играх исключительно от архитектуры ядра и объема кэша L2. В нашем тестировании принимали участие следующие модели:

  • Pentium Dual-Core E2220
  • Core 2 Duo E4400
  • Pentium Dual-Core E5200
  • Core 2 Duo E7400
  • Core 2 Duo E8400
  • Core 2 Quad Q8200
  • Core 2 Quad Q6600
  • Core 2 Quad Q9450
В этой статье мы также попытаемся изучить ситуацию с процессорозависимостью современных игровых приложений, выяснить какой из процессоров является самым оптимальным в разных игровых приложениях, как сказывается на fps разгон тех или иных моделей CPU, а также насколько проявляется зависимость от центрального процессора в играх при повышении разрешения и увлечении нагрузки на видеоадаптер. С этой целью мы включили в тест 12 реальных игровых приложений, в частности несколько игр с использованием разрекламированной технологии Nvidia PhysX.

Pentium Dual-Core E2220

Начнем мы рассмотрение наших тестируемых процессоров с представителя младшей серии Pentium E. В иерархии процессоров Intel ниже этих моделей расположены лишь представители семейства Celeron, одноядерные модели которого уже упраздняются, а двухъядерные модели с кэшем 512 КБ занимают нижние строчки прайс-листов.


Pentium E2220 работает на частоте 2,4 ГГц и поддерживает FSB 800 МГц. VID данного процессора равняется 1,325 В, что довольно много, но вполне характерно для Allendale на частотах свыше 2 ГГц.


Высокий множитель данного процессора (12x) делает возможным его разгон даже на самых бюджетных материнских платах, которые не могут работать на высоких частотах системной шины. Но пропускная способность шины значительно сказывается и на производительности (в этом вы убедитесь и из нашего тестирования), поэтому лучше разгонять процессор, понижая множитель и пытаясь достичь максимально возможной частоты FSB. Что же до разгона именно нашего экземпляра, то у него оказался очень низкий FSB Wall, что, к сожалению, характерно для всех младших моделей поколения Core. Для Pentium E2220 максимальным значением шины FSB, на которой он смог работать, оказались лишь 366 МГц. Сам процессор удалось разогнать до частоты 3,29 ГГц с напряжением выше 1,45 В — на более высоких частотах наблюдалась нестабильность в его работе. Охлаждение осуществлялось кулером Thermalright Ultra-120 eXtreme с вентилятором Globe Fan S1202512M на 2400 об/мин.

Core 2 Duo E4400

Следующий процессор — представитель популярной некогда серии Core 2 Duo E4ххх, которые в свое время были лучшим выбором в соотношении цена/производительность.


Основан также на ядре Allendale, но L2-кэш уже равен 2 МБ. Работает на частоте 2 ГГц, системная шина составляет 800 МГц, множитель 10x и VID 1,325В.


FSB Wall данной модели начинался примерно с 410-420 МГц. Разгон оказался чуть лучше, чем у предшественника на ядре Allendale и наш Core 2 Duo E4400 смог функционировать на частоте 3,35 ГГц при множителе 9x и шине 372 МГц.

Pentium Dual-Core E5200

Этот старший представитель бюджетной серии, которому была посвящена отдельная , в отличие от младших моделей основан на 45-нм ядре Wolfdale, преимущество которого над Allendale, при одинаковых объеме L2-кэша и частоте, достигает от 2 до 8% в разных приложениях.


Рабочая частота процессора составляет 2,5 ГГц при шине 800 МГц. Данный CPU отличается высоким множителем, равным 12x, и низким VID, который соответсвует 1,1125 В. В отличие от старых Pentium E у этой модели кэш L2 уже равен 2 МБ.


Разгон Pentium E5200 был подробно нами рассмотрен ранее в уже упоминавшейся статье. Но попытка, как и в прошлый раз, провести все тесты на частоте 4,18 ГГц успехом не увенчались. Вначале стабильным максимумом были 4,15 ГГц, на которых даже удалось провести большую часть тестов, но в определенный момент начали появляться ошибки, а после возникшего BSOD, процессор наотрез отказывался даже стартовать на этой частоте. Вот вам еще один пример очень быстрой деградации и опасности высоких напряжений для Wolfdale. После продолжительных «танцев с бубнами» были выявлены необычные симптомы в поведении нашего многострадального Pentium E5200. Оказалось, что с деградацией у него снизился и FSB Wall! Если ранее он работал на частотах шины вплоть до 390 МГц, то теперь его работа уже на частоте выше 380 сопровождалась периодическими зависаниями, после которых единственным способом запустить компьютер был сброс BIOS. Но самым необычным стало то, что процессор отказывался стабильно работать на высоком напряжении ядра. Стоило подать на ядро 1,425 В и компьютер уже не стартовал даже на 4 ГГц. После различных экспериментов все же удалось добиться стабильной работы на 4,1 ГГц. Однако под самый конец тестов и на этой частоте было пару характерных ошибок. Поэтому автор не рекомендует вам использовать младшие модели Wolfdale при напряжении ядра свыше 1,4 В — они горят как спички (утрировано)! Старшие модели вроде бы более устойчивы...

Core 2 Duo E7400

Этот процессор тоже основан на 45-нм ядре Wolfdale, но уже с увеличенным до 3 МБ кэшем L2. Рабочая частота 2,8 ГГц, шина равна 1066 МГц, множитель 10,5x, VID составляет 1,2625 В.


Разгон этого процессора остановился на той же отметке, что и у предшествующей модели — 4,1 ГГц. Дальнейшее повышение частоты приводило уже к нестабильной работе.

Core 2 Duo E8400

Представитель старшего семейства Core 2 Duo.


Процессор основан на ядре Wolfdale с 6 МБ разделяемого кэша второго уровня Функционирует на шине 1333 МГц, множитель равен 9x, VID ниже даже чем у E7400 — 1,175 В.


Пределом для использовавшейся нами материнской платы Gigabyte P35-S3 являются 450 МГц (1800 МГц) по шине, так что она уже выступает ограничителем при разгоне моделей с невысоким множителем, что в полной мере относится и к Core 2 Duo Е8400. С данной платой разгон процессора составил лишь 4 ГГц, но у него еще явно больший потенциал, ведь для этой частоты даже не пришлось поднимать напряжение на процессоре до 1,4 В.

Core 2 Quad Q8200

Новая модель и самая дешевая среди четырехъядерных процессоров Intel.


Процессор основан на ядре Yorkfield с небольшим объемом кэш-памяти, равным 4 МБ. Кроме самого низкого объема кэш-памяти среди моделей Core 2 Quad, этот процессор также отличается и самой низкой рабочей частотой — 2,33 ГГц. Плюсом является быстрая 1333-мегагерцовая системная шина. Правда, из-за нее у процессора и очень низкий множитель — 7x, что станет краеугольным камнем в разгоне этого процессора даже на самых лучших материнских платах. VID составляет 1,162В.


С четырехъядерными процессорами плата Gigabyte P35-S3 не смогла работать на той же частоте FSB, как при разгоне Core 2 Duo. Поэтому разгон ограничился отметкой 3,05 ГГц при шине 436 МГц. Но даже для такой столь невысокой частоты питание процессора пришлось поднять до 1,35 В.

Core 2 Quad Q6600

Популярная модель. С массовой экспансией более новых процессоров Yorkfield, «старичок» Q6600 все еще не теряет своей привлекательности. Правда, несмотря на значительное снижение цены на него, из-за бешеной девальвации нашей национальной валюты, сегодня на ценнике этого процессора красуется примерно та же цифра, что и год назад.


Процессор основан на 65-нм ядре Kentsfield с рабочей частотой 2,4 ГГц, работающий на шине 1066 МГц при множителе 9x, VID равен 1,225 В. Процессор относится к популярному степингу G0 (более старый B3 уже давно исчез из продажи). Общий объем кэша L2 составляет 8 МБ.


Разгон этого процессора преподнес сюрприз. Известно, что модели G0 обладают неплохим потенциалом, но мы и не ожидали, что «на воздухе» этот процессор без труда преодолеет отметку в 3,8 ГГц, что для 65-нм Core 2 выдающийся результат. Для тестов мы остановились на круглой цифре 3,8 ГГц, при этом для стабильной работы не пришлось даже повышать напряжение выше 1,4 В.

Core 2 Quad Q9450

Последним процессором в нашем тестировании выступит «младший из старших». Core 2 Quad Q9450 — процессор с максимальным объемом кэша, но самой низкой рабочей частотой среди аналогов.


Данный CPU основан на ядре Yorkfield с общим объемом кэш-памяти 12МБ. Рабочая частота процессора составляет 2,66 ГГц, шина равна 1333МГц, множитель 8x, VID — 1,25 В.


В разгоне мы остановились на отметке 3,49 ГГц. Странно, но для стабильной работы процессора даже на этой частоте пришлось превысить порог в 1,4 В, в то время как Kentsfield ограничился и более низким значением на более высокой частоте.

Технические характеристики процессоров
Pentium Dual-Core E2220 Core 2 Duo E4400 Pentium Dual-Core E5200 Core 2 Duo E7400 Core 2 Duo E8400 Core 2 Quad Q8200 Core 2 Quad Q6600 Core 2 Quad Q9450
Ядро Allendale Allendale Wolfdale Wolfdale Wolfdale Yorkfield Kentsfield Yorkfield
Техпроцесс, нм 65 65 45 45 45 45 65 45
Частота, МГц 2400 2000 2500 2800 3000 2333 2400 2666
Множитель 12 10 12.5 10.5 9 7 9 8
FSB, МГц 800 800 800 1066 1333 1333 1066 1333
кэш L1, КБ 32 x 2 32 x 2 32 x 2 32 x 2 32 x 2 32 x 4 32 x 4 32 x 4
кэш L2, КБ 1024 2048 2048 3072 6144 2048 x 2 4096 x 2 9144 x 2
TDP, Вт 65 65 65 65 65 95 95 95
Кол-во транзисторов, млн 167 167 420 420 420 820 582 820
Площадь кристалла, кв. мм 111 111 107 111 107 107 x 2 142 x 2 107 x 2
Набор инструкций RISC,
IA32,
XD bit,
MMX,
EMT64,
SSE,
SSE2,
SSE3
RISC,
IA32,
XD bit,
MMX,
EMT64,
SSE,
SSE2,
SSE3
RISC,
IA32,
XD bit,
MMX,
EMT64,
SSE,
SSE2,
SSE3
RISC,
IA32,
XD bit,
MMX,
EMT64,
SSE,
SSE2,
SSE3,
SSE4
RISC,
IA32,
XD bit,
MMX,
EMT64,
SSE,
SSE2,
SSE3,
SSE4
RISC,
IA32,
XD bit,
MMX,
EMT64,
SSE,
SSE2,
SSE3,
SSE4
RISC,
IA32,
XD bit,
MMX,
EMT64,
SSE,
SSE2,
SSE3
RISC,
IA32,
XD bit,
MMX,
EMT64,
SSE,
SSE2,
SSE3,
SSE4
Прочие особенности - EIST EIST EIST VT, EIST, TXT EIST VT, EIST VT, EIST, TXT

Тестовая конфигурация и особенности тестирования

Тестовый стенд:

  • Кулер: Thermalright Ultra-120 eXtreme;
  • Материнская плата: Gigabyte P35-S3;
  • Память: 2х1GB TEAM PC8500;
  • Видеокарта: Point of View GF9800GTX EXO (@ 770/1998/2418);
  • Жесткий диск: 320GB WD3200AAKS;
  • Звуковая карта: Creative Audigy 4 (SB0610);
  • Блок питания: 700Вт FSP FX700-GLN;
  • Операционная система: Windows XP SP3 x86, Windows Vista SP1 x86;
  • Драйвера видеокарты: GeForce 182.06, NVIDIA PhysX 9.09.
Использовавшаяся видеокарта GeForce 9800GTX была разогнана до частот 770/1998/2418 МГц (что выше рабочих частот GeForce 9800GTX+). В настройках драйвера отключено ускорение обработки PhysX с помощью GPU, чтобы вся нагрузка ложилась исключительно на центральный процессор. Причем в данноv случае мы получаем соотношение между процессорами, которое будет также характерно для систем с использованием видеокарт Radeon. Более подробно про игры с использованием NVIDIA PhysX будет сказано непосредственно в самом тестировании.

Для процессоров память была сконфигурирована следующим образом:

  1. Pentium Dual-Core E2220 в номинале 800 МГц (4-4-4-11), в разгоне 1098 МГц (5-5-4-14);
  2. Core 2 Duo E4400 в номинале 800 МГц (4-4-4-11), в разгоне 1190 МГц (5-5-5-16);
  3. Pentium Dual-Core E5200 в номинале 800 МГц (4-4-4-11), в разгоне 1119 МГц (5-5-5-15);
  4. Core 2 Duo E7400 в номинале 1066 МГц (5-5-4-14), в разгоне 1173 МГц (5-5-5-16);
  5. Core 2 Duo E8400 в номинале 1066 МГц (5-5-4-14), в разгоне 1068 МГц (5-5-4-14);
  6. Core 2 Quad Q8200 в номинале 1066 МГц (5-5-4-14), в разгоне 1046 МГц (5-5-4-13);
  7. Core 2 Quad Q6600 в номинале 1066 МГц (5-5-4-14), в разгоне 1055 МГц (5-5-4-13);
  8. Core 2 Quad Q9450 в номинале 1066 МГц (5-5-4-14), в разгоне 1046 МГц (5-5-4-13).
Для процессоров в конфигурации 8х366 память была установлена на 1098 МГц (5-5-4-14), в конфигурации 7х436 1046 МГц (5-5-4-13).

Кроме сравнения производительности на номинальной частоте и в разгоне произведен ряд дополнительных тестов при одинаковых параметрах. Изначально старшие модели были протестированы на частоте 3,05 ГГц в конфигурации 7х436 МГц (предел для Core 2 Quad Q8200). Но в связи с тем, что количество процессоров в тесте было увеличено, а некоторые из них из-за низкого FSB Wall, не могли работать на такой частоте шины, три младших представителя Core 2 Duo были протестированы в конфигурации 8х366 МГц. Это давало наиболее близкую итоговую частоту процессора (2,92 МГц). На этих же параметрах был протестирован и Core 2 Duo Е8600, так чтобы можно было сравнить быстродействие младших моделей с ним. Именно этот процессор выступит у нас «эталоном», относительно которого мы под конец статьи рассчитаем разницу результатов между ним и другими процессорами нашего тестирования, чтобы наглядно увидеть какое преимущество одной архитектуры над другой, и какой выигрыш дает больший объем кэш-памяти в том или ином приложении. Эти результаты позволят вам судить о разнице между разными сериями процессоров Core 2 Duo и Core 2 Quad. Конечно же, если рассматривать их производительность на номинальных частотах, то кроме самой частоты процессора сильно влияет и частота системной шины, но в случае разгона эти различия нивелируются. Как и в нашем тестировании, среди всего модельного ряда процессоров Intel под Socket 775 можно выделить две четкие группы с низким и высоким FSB Wall, так что и наше разбиение процессоров на две категории вполне отражает глобальную ситуацию. Касательно же зависимости производительности непосредственно от частоты FSB у различных моделей CPU на ядрах разной архитектуры, то соответствующие выводы тоже можно будет четко сделать по результатам проведенных тестов.

Дополнительное тестирование процессоров на одном множителе/шине проводилось для всех синтетических бенчмарков и прикладных программ и лишь для половины игр, где есть достаточно четкие средства измерения fps или существует очень сильная зависимость от CPU, что дает ощутимую наглядную разницу в результатах.

Тестирование в играх проводилось в трех разрешениях, начиная от 1024х768 на средних настройках и до 1600х1200 с высокими настройками графики. В особо требовательных к видеоподсистеме играх тест в самом высоком разрешении не производился, в играх с активным использованием NVIDIA PhysX тестирование производилось лишь в одном разрешении (причины этого будут вполне очевидны из результатов). Особенности тестирования в каждом приложении описаны непосредственно перед полученными результатами.

Результаты тестирования в прикладном ПО

PCMark 2005


В данном синтетическом тестовом пакете наблюдается минимальная разница в зависимости от архитектуры и объема кэш-памяти в процессорном тесте, сильнее это сказывается в тесте подсистемы памяти. Основное влияние на результат оказывает рабочая частота процессоров. В номинале производительность Core 2 Duo E8400 равна производительности Core 2 Quad Q6600. Младший Q8200 обгоняет Core 2 Duo E7400, но уступает E8400.

Super Pi


В этом тесте наблюдается уже большая зависимость от объема кэш-памяти. Core 2 Duo E4400 показывает лучший результат на 2 ГГц по сравнению Pentium E2220 на 2,4 ГГц. Но у старших моделей Wolfdale разница между 3 МБ и 6 МБ кэш-памяти минимальна. Еще более несущественна и разница и между двухъядерными и четырехъядерными процессорами, которая составляет жалкие доли процента.

PHP Benchmark

Для тестирования скорости выполнения PHP-скриптов использовался PHP Calendar Benchmark. Скрипт запускался в Internet Explorer под веб-сервером в составе программного пакета Denwer, включающим Apache 2.2.4, РНР 5.2.4 и MySQL Server 5.0.45. В графике отображено время генерации страницы (меньший результат — лучший).


В данном тесте наблюдается мизерное преимущество четырехъядерных моделей, чуть менее 1%. Столь же минимальна разница и между процессорами с разным объемом L2-кэша.

Fritz Chess Benchmark

Бенчмарк на основе шахматной игры. На графиках отображены результаты среднего количества просчитанных ходов за одну секунду.


А вот в этом тесте наблюдается огромное, почти двукратное, преимущество Core 2 Quad над Core 2 Duo, а вот зависимость от объема кэш-памяти снова не столь велика. Интересно, что в номинале даже низкочастотный Q8200 оказывается 50% быстрее E8400. И это соотношение почти не меняется при разгоне процессоров до 3 и 4 ГГц соответственно.

Для теста использовался встроенный тест производительности.


В данном архиваторе наблюдается веское преимущество процессоров с большим объемом кэш-памяти, в частности снова Core 2 Duo E4400 обгоняет Pentium E2220, который работает изначально на более высокой частоте. Разница между Core 2 Quad Q8200 и Q6600 минимальна. А лидером по результатам является Core 2 Quad Q9450, даже в разгоне, несмотря на то, что его ближайший конкурент на базе Kentsfield имеет частоту на 300 МГц выше. Обратите внимание, что при повышении частоты Pentium E5200 с 2,5 ГГц до 2,93 ГГц, т.е. плюс 17%, прирост составляет уже 44%. Низкая частота FSB явно «сдерживает» производительность этого процессора даже на номинальной частоте.

Еще один популярный архиватор, который тоже имеет встроенный тест производительности. На диаграмме отображены итоговые рейтинги производительности для каждого процессора в данном тесте.


Ситуация практически аналогична тому, что мы видели в прошлом приложении, снова огромное преимущество четырехъядерных моделей, но зависимость от кэша уже не столь высока и Core 2 Quad Q6600 в разгоне уже обгоняет Q9450 благодаря более высокой частоте, да и разница между ними на одних параметрах меньше, около 1% (несмотря на разную архитектуру и большую разницу в объеме кэша L2). Младший представитель семейства Core 2 Quad уступает лидерам примерно 5%. Кстати, если снова обратится к тому же Pentium E5200, то при повышении частоты на 17% мы выигрываем почти 24%, что снова говорит о том, что шины 800 МГц не достаточно даже для младших моделей Wolfdale.

RenderBench


Тест однопоточный, что четко видно по результатам. Да и разницы между процессорами с разным кэшем L2 тоже нет, зато наблюдается небольшое преимущество Wolfdale и Yorkfield над Allendale и Kentsfield. В связи с этим и в разгоне лучшие результаты у тех процессоров, у которых самая большая рабочая частота.

Данный тест уже больше приближен к жизни, поскольку основан реальном приложении для работы с 3D.


В однопоточном тесте видно, что разница между процессорами с разным кэшем L2 минимальна, чуть большая разница между архитектурами прошлого поколения в сравнении с Yorkfield и Wolfdale. Благодаря этому, и более быстрой шине, Q8200 уступает Q6600 на номинальных частотах лишь около процента. В многопоточном тесте наблюдается почти двухкратный прирост в производительности у Core 2 Duo и почти четырехкратный прирост у Core 2 Quad.

CineBench


Это приложение уже более чувствительно в объему кэш-памяти, благодаря чему разница между двухъядерными и четырехядерными процессорами не такая большая, но даже это не позволяет Core 2 Duo E8400 и E7400 в разгоне достичь хотя бы показателей Core 2 Quad Q8200 на родных 2,33 ГГц. Преимущество Q9450 над E8400 при одинаковых параметрах около 85%.

x264 Benchmark

Бенчмарк измеряющий скорость кодирования HD-видео. Результаты построены по среднему fps, который вычислялся как среднее арифметическое всех данных по всем прогонам, которые в конце выдаются программой.


Еще один тест, демонстрирующий безоговорочное преимущество четырехъядерных процессоров. И снова даже Core 2 Duo E8400 на частоте 4 ГГц не может достичь даже результатов Q8200 на 2,33 ГГц. Интересно, что этот же младший Core 2 Quad умудряется немного обогнать Q6600 (у которого больший объем кэша) при одинаковых множителе/шине.

VirtualDub

В данной популярной программе для работы с видео тестирование проводилось следующий образом: выполнялось кодирование видеофайла начальным объемом 700 МБ с использованием кодека DivX 6.8.5. В настройках кодека включен multithreading, все остальные параметры по умолчанию. Начальный файл находился на одном логическом диске, новый записывался на другой, пусть к ним сохранялся для каждого тестирования.


А вот тут не все уже так однозначно. Если на номинальных частотах быстрее всех с задачей справляется Core 2 Quad Q9450, то немного уступивший ему Core 2 Duo E8400 уже занимает место лидера в разгоне, и дополнительные 500 МГц здесь компенсируют отсутствие двух дополнительных ядер. Данное приложение очень чувствительно к объему кэша L2, да и более прогрессивная архитектура позволяет Wolfdale выиграть дополнительно 40 секунд относительно предшественника Allendale. Такая зависимость обуславливает и то, что Q8200 и Q6600 демонстрируют одинаковое время как на номинальных частотах, так и на одной и той же частоте 3,05 ГГц при одинаковой шине.

Adobe Photoshop

Для тестирования в Adobe Photoshop CS4 мы воспользовались action-скриптом, который используется iXBT . Но, правда, чтобы уменьшить время его выполнения он был дополнительно «облегчен» (примерно на треть) путем удаления некоторых действий. В данный скрипт включены самые различные действия с изображением (различные трансформации, использование фильтров и т.п.). Все действия выполнялись над png-файлом 4096х3072 объемом 18,9 МБ.


В этом приложении прирост от дополнительных двух ядер доходит до 20%, так что отставание от Core 2 Quad процессоры Core 2 Duo вполне в состоянии компенсировать разгоном, в частности E4400 на частоте 3,35 ГГц достигает показателей Core 2 Quad Q8200 на 2,33 ГГц. На номинальных частотах безоговорочный лидер Q9450, который даже ближайшего соперника Q6600 обгоняет на полторы минуты. В разгоне же уже второй оказывается на 21 секунду быстрее благодаря более высокой частоте. Младший Core 2 Quad Q8200 на частоте 3,05 ГГц сравнивается с Core 2 Duo E8400 на частоте 4 ГГц.Результаты тестирования в игровых приложениях


Для начала взглянем на результаты в синтетическом игровом тесте.


В номинале лидером явялется Q9450, за которым идет E8400, успешно обгоняющий младшие четырехъядерные модели. С разгоном лидер немного уступает процессору Core 2 Quad Q6600. При одинаковых параметрах видно, что в данном бенчмарке два дополнительных ядра дают примерно на 14,5 % прирост относительно своих двухъядерных аналогов (Core 2 Quad Q9450 против Core 2 Duo E8400 и Core 2 Quad Q8200 против Pentium E5200)

FlatOut: Ultimate Carnage

Но перейдем наконец-то к реальным игровым приложениям.


Начнем тестирование с популярной гоночной игры. В данной игре fps не превышает частоту обновления монитора. Хоть мы и использовали специально для этой игры ЭЛТ-монитор, но была возможность, что на низких настройках мы все же упремся в верхний предел монитора 100 или 85 Гц, поэтому использовались только максимальные настройки качества графики в сочетании с анизотропной фильтрацией AF16x. Для теста по 8 раз переигрывалась трасса Timberlands1.



Как в 1024х768, так и в 1280х1024 с разгоном результаты на всех процессорах почти не отличаются, производительность начинает упираться в видеокарту. А вот на номинальных частотах разница более заметна. Core 2 Quad Q8200 производительней Pentium E5200, хотя у второго выше частота. Среди старших моделей какого-либо преимущества дополнительные два ядра не дают.

Ниже приведена диаграмма загрузки процессора Q6600 в этой игре в разрешении 1024х768. Нагрузка распределяется на все четыре ядра, но лишь два из них постоянно загружены на 50%, остальные и того меньше.


Судя по результатам в обоих разрешениях этой игре вполне достаточно двухъядерного процессора с частотой от 3 ГГц и кэшем 3 МБ. Дальнейшее повышение частоты не имеет особого смысла. И если младшие модели с кэшем 2 МБ могут компенсировать отставание от старших собратьев разгоном, то Pentium E2220 категорически не хватает и в разгоне, не говоря уже о номинальных частотах.

Call of Duty: World at War

Следующей игрой выступает последняя часть известной игровой серии.


Тестирование проводилось в начале второй миссии под названием «Слабое сопротивление» (в локализованной версии), где мы участвуем в штурме берега острова Пелелиу. Измерялся средний fps во время скриптового ролика и далее, когда, мы направляем авиаудар по прибрежным укреплениям японцев, вплоть до момента, когда мы достигаем берега. Этот эпизод переигрывался по три раза для уменьшения погрешности. Настройки графики максимальные, в разрешениях 1280х1024 и 1600х1200 дополнительно включалась фильтрация AF16x.



Несмотря на довольно высокий fps даже в высоких разрешениях наблюдается преимущество четырехъядерных процессоров. Core 2 Quad Q8200 умудряется обойти Core 2 Duo E7400. Хотя в разгоне уже никакой разницы между процессорами с нашей видеокартой не заметно. Эта игра уже более эффективно использует все 4 ядра.


Но в целом для этой игры опять же достаточно Core 2 Duo с частотой от 3 ГГц и большим кэшем. Младших моделей Pentium E2220 и Core 2 Duo E4400 на номинальной частоте для игры тоже маловато, недалеко от них ушел и Pentium E5200, но его производительность, как и E7400, в значительной мере также ограничены низкой частотой FSB, но все это компенсируется разгоном.


Популярный сетевой шутер, отличающийся невысокими требованиями к видеокарте. На базе движка этой игры уже увидели свет множество игр (вот только хороших мало), так что результаты в этой игре можно теоретически считать верными и для всех тех игр, что выпущены на базе Unreal Engine 3. Тестирование проводилось не с помощью каких-то бенчмарков, поскольку они не создают в этой игре максимальную нагрузку, да и погрешность у них высокая при запуске демо-записей с ботами. Поэтому традиционно для теста запускался дезматч на уровне Shangri La длительностью 5 минут против 20 ботов среднего уровня сложности. В течение этого матча и измерялся средний fps. Для большей точности полученных результатов матч переигрывался два раза. Версия игры 1.3, настройки графики максимальные (максимальная детализация автоматически включает и AF16x), параметр «оптимизация производительности» отключен (он приводил к некоторому ограничению fps).



Как видим, игра очень зависит от центрального процессора. На номинальных частотах Core 2 Duo E8400 оказывается примерно на 75% быстрее Core 2 Duo E4400 и Pentium E2220. Даже E7400 при 7% разнице в частоте уступает в производительности старшей модели 17%. Сильная зависимость игры от объема кэша отлично проявляется при разгоне процессоров, когда Core 2 Duo E8400 на частоте 4 ГГ на 11% обходит E7400 на частоте 4,1 ГГц в разрешении 1024х768. В 1280х1024 этот отрыв уже уменьшается до 7%, и лишь в высоком разрешении практически исчезает.

Несмотря на то, что с самого момента появления игры разработчики хвастали оптимизацией под многоядерные процессоры, никакого преимущества Core 2 Quad над Core 2 Duo мы в очередной раз не наблюдаем. Попытаемся разобраться в ситуации и взглянем на график загрузки Core 2 Quad Q6600:

1024х768


1280х1024


Одно ядро загружено примерно на 70-80%, загрузка второго на 10% меньше, а два другие загружены менее чем на половину. Для сравнения вот загрузка процессора Pentium E5200, где оба ядра постоянно загружены на 100%



Да, движок Unreal Engine 3 действительно использует все ядра, но использует их отнюдь не максимально эффективно, из-за чего в реальности вы не получите практически никакого преимущества четырехъядерного процессора над двухядерным, разве что на очень низких частотах.

S.T.A.L.K.E.R.: Clear Sky


Популярная отечественная игра, завсегдатай в тестах видеокарт. Ну а как она проявит себя в процессорном тесте, мы увидим ниже. Для тестов использовался специальный бенчмарк, недавно выпущенный GSC. В низком разрешении тестирование проводилось при полном динамическом освещении и высоких настройках, в высоких разрешениях включалось улучшенное полное динамическое освещение (под Direct X9) и максимальные настройки качества.



Уже в разрешении 1280х1024 с разгоном разница между процессорами нивелируется, поэтому в 1600х1200 они протестированы уже лишь на номинале и в разгоне.


Производительность в игре очень сильно зависит от частоты процессора и объема кэша, а вот дополнительные ядра никакой роли не играют. В подтверждение этих слов ниже приведен соответствующий график загрузки процессора при тестировании в разрешении 1024х768, по которому видно, что вообще используется лишь одно ядро, да изредка нагрузка слегка ложится на второе.


Не на максимальных настройках игра сохраняет четкую зависимость от частоты процессора даже на частотах свыше 4 ГГц. Лидером в этой игре однозначно является Core 2 Duo E8400 благодаря 6 МБ кэша и хорошему разгонному потенциалу.


Для тестов использовался игровой бенчмарк в демо-версии игры 1.2.0.0. Настройки графики во всех разрешениях высокие, в 1280х768 и 1600х1200 дополнительно включался эффект Glow и фильтрация AF16x.



И в низком и в высоком разрешении наблюдается весомая разница в результатах в зависимости от процессора. Снова лучшие результаты у процессоров с большим объемом кэша, а дополнительные ядра погоды не делают, хотя игра использует более двух ядер. Это доказывает нижний график, по которому видно, что активно используются три ядра, да вот только загружены они не на максимум.



Неплохой отечественный action-RPG, который можно было бы охарактеризовать как смесь Oblivion и GTA на фоне тропических пейзажей в духе Far Cry. Для каждого режима три раза повторялась прогулка по небольшому поселку, наполненному различными персонажами, маршрут строго повторялся. Настройки графики максимальные во всех трех разрешениях.



Игра отлично реагирует на дополнительные ядра, так же и объем кэш-памяти L2 у процессоров довольно ощутимо сказывается на результате. И эта зависимость сохраняется вплоть до самого высокого разрешения 1600х1200. Отставание от Core 2 Quad процессоры Core 2 Duo Wolfdale легко компенсируют разгоном. Однако полноценно конкурировать с многоядерными моделями могут лишь модели с большим объемом кэша L2. Даже Core 2 Quad Q8200 на невысокой частоте 3,05 ГГц оказывается на уровне Pentium E5200 на 4,1 ГГц, и лишь старшие Wolfdale обгоняют его.

Игра использует все четыре ядра и загрузка каждого более половины. Ниже отображен соответствующий график для низкого разрешения.


Grand Theft Auto 4


Ну вот мы и подобрались к одной из самых нашумевших игр прошлого года. Игра, которую ждала армия фанатов, по мнению многих вышла немного не такой, как нам бы ее хотелось увидеть. Позабыв о PC как игровой платформе, Rockstar мало того, что выпустили игру с задержкой так еще и сделали ее так, что попытки поиграть в нее вызвали море недовольства со стороны игроков. Если вы все еще боретесь с тормозами в игре, то нижеприведенные графики заставят вас уж точно убедиться в необходимости апгрейда.

Тестирование в игре проводилось встроенным тестом производительности. Поскольку GTA4 является просто «чудом» программной оптимизации, то родной бенчмарк в разрешении 1600х1200 с видеокартой 512MB не запускается. Но это нисколько не связанно с кривыми растущими не из того места руками программистов Rockstar, а исключительно лишь с расположением компьютеров в геопатогенных зонах, магнитными бурями, пятнами на солнце и прочими глобальными процессами не подвластными человеку. Поскольку мы не проходили спецкурс по шаманизму, а танцы с бубном (который почему-то забывают ложить в коробку с лицензионной версией игры) нам не по душе, то тестирование проводились нами лишь в разрешениях 1024х768 и 1280х1024.. В первом случае качество изображения и текстур установлено в среднее значение, так же как и ползунки дальности обзора, детализации и теней. Во втором разрешении текстуры в положении «высоко», качество изображения «очень высоко», все ползунки на максимум. Настройки качества разблокированы с помощью добавления специальных команд в commandline.txt



Вот он полный триумф четырехъядерных процессоров. На номинальных частотах и даже в разгоне (при разнице в 950 МГц) самый мощный двухъядерный процессор Core 2 Duo E8400 показывает результаты на уровне с Core 2 Quad Q8200! А если взглянуть на сравнение процессоров на одной частоте то наблюдается интересная ситуация, когда отрыв Core 2 Quad над Core 2 Duo только увеличивается. А вот если взглянуть на график загрузки Core 2 Quad Q6600 в низком разрешении, то мы увидим, что ситуация не сильно отличается от того, что мы видели в Unreal Tournament 3:


Даже на этом процессоре пиковая загрузка ядер не достигает 100%.

Справедливости ради, отметим, что в реальной игре, в некоторые моменты, производительность может падать значительно ниже того, что показывает бенчмарк. Так что если хотите судить о том, на что способен процессор в особо «горячие» и насыщенные действием игровые моменты, вам необходимо отнять от результатов примерно 10 кадров. И вот тогда-то станет ясно, что без разгона среди двухъядерных процессоров лишь Core 2 Duo E8400 сможет справиться с игрой (и то в низком разрешении). Все нижестоящие модели смогут обеспечить более-менее приемлемый уровень производительности лишь при разгоне до 4 ГГц. На Pentium E5200 на частоте 2,5 ГГц, к примеру, на видеокарте GeForce 8600 GT мы получили почти такой же результат, как и с разогнанным GeForce 9800 GTX.

В высоком разрешении похоже ничто не способно помочь двухъядерным CPU, и даже Core 2 Duo E8400 с разгоном до 4 ГГц не достигает результатов Core 2 Quad Q9450 на частоте 2,66 ГГц. Если вы фанат этой игры, то вам однозначно придется раскошелиться на четырехъядерный процессор.


В этой игре тестирование проводилось с помощью встроенного бенчмарка. В разрешении 1024х768 качество графики в среднем положении, в более высоких разрешениях включены максимальные настройки (рендеринг уже осуществляется средствами Direct X10) без активации сглаживания и фильтрации. Тестирование проводилось под Windows Vista. Версия игры 1.009. В связи с большим разбросом результатов в этом бенчмарке на низких настройках, он прогонялся для самого низкого разрешения 7 раз, для более высоких 5 раз.



Вплоть до самого высокого разрешения сохраняется высокая процессорозависимость, при этом четырехъядерные модели выступают лидерами. Только в низком разрешении Core 2 Duo E8400 на 4 ГГц немного обгоняет соперников, работающих на 3,5 и 3,8 ГГц. Но при повышении настроек качества даже преимущество по частоте не позволяет Core 2 Duo E8400 достичь результатов разогнанных Core 2 Quad Q6600 и Q9450. В тестировании на одних параметрах тоже видно, что отрыв Core 2 Quad от Core 2 Duo увеличивается в разрешении 1280х1024, а 1600х1200 уже начинает не хватать видеокарты. Правда, в данной игре два дополнительных ядра дают уже не столь большое преимущество как в GTA4, да и для комфортной игры здесь вполне хватит или старших Core 2 Duo или разогнанных младших моделей.

Far Cry 2


Хоть и не самая громкая игра прошлого года, но довольно неплохой и популярный шутер с приятной графикой. Для тестов использовась стандартная демо-запись Ranch Small, которая запускалась два раза по 5 повторов. В случае большого разброса результатов (что иногда имеет место) тест повторялся. Как и в прошлой игре, в низком разрешении включался рендеринг в Direct X9, настройки High. В более высоких разрешениях настройки Ultra при активации Direct X10.



Еще одна игра, где четко выражено преимущество четырехъядерных процессоров. На номинальных частотах в разрешении 1024х768 Core 2 Duo E8400 уступает Core 2 Quad Q9450 17%, вроде бы и не очень много, но чтобы покрыть эти проценты, первому необходим разгон до 4 ГГц. Смешно, но разогнанный Core 2 Duo E8400 умудряется обогнать лишь Core 2 Quad Q8200, работающий на 950 МГц ниже. В разрешении 1280х1024 разница между процессорами намного меньше, в Direct X10 уже необходима более мощная видеокарта. Но даже там где мы вплотную подошли к возможностям видеокарты сохраняется пускай и минимальное, но преимущество многоядерных CPU.

Crysis Warhead


Данная игра была и остается самой требовательной к видеоподсистеме, так же как и самой красивой. Так что тестирование в этом приложении ограничено лишь двумя разрешениями. Нами использовался специальный HardwareOC Benchmark версии 1.1.1.0, запускалась демо-запись Airfield. Отметим сразу, что читателям не стоит пугаться низких результатов, поскольку эта демо-запись одна из самых тяжелых (особенно для CPU) в использовавшемся HardwareOC Benchmark. В разрешении 1024х768 настройки графики Medium, в 1280х1024 Very High. Включался рендеринг с помощью Direct X9, хотя, судя по результатам, у нас есть подозрение что под Vista в данном бенчмарке даже при активации Direct X9 игра все же запускается в режиме Direct X10.



Судя по результатам наблюдается минимальное преимущество четырехъядерных моделей, которое, впрочем, становится очевидно лишь при сравнительном тестировании на одинаковых параметрах, где заметно всего лишь 2% преимущество Core 2 Quad Q9450 над Core 2 Duo E8400, хотя в тот же момент E7400 на 1% быстрее Q8200. Подобные различия можно смело назвать несущественными. На самом деле производительность в игре зависит архитектуры от частоты и объема кэш-памяти. Заметно отстает от всех остальных Pentium E2220 на ядре Allendale 1M, разница между ним и Core 2 Duo E4400 при одинаковых параметрах намного больше, чем даже отставание того же E4400 от Core 2 Duo E8400.

Перейдем к играм, использующим технологию NVIDIA PhysX. Первая игра, Mirror’s Edge, основанная на движке Unreal Engine 3 обладает очень невысокими требованиями к видеоадаптеру, а учитывая, что в игре нет толпы ботов, то и требования к процессору у нее ниже. Но все это актуально лишь до тех пор, пока вы не включаете в настройках NVIDIA PhysX. После этого начинаются резкие падения fps в некоторых моментах, вплоть до невозможности играть. И если обладатели видеокарт NVIDIA могут решить эту проблему, активировав аппаратное ускорение обработки физики средствами графического чипа, то пользователи видеокарт AMD лишены такой возможности. Единственной надеждой остается программная обработка, когда вся нагрузка ложится на центральный процессор (и именно тогда проявляются все эти жуткие «тормоза»). В общем, игра сама собой требовала чтобы в ней сравнили разные процессоры, ведь NVIDIA PhysX судя по всему создает на них бешенную нагрузку.



Для теста был выбран один из самых тяжелых моментов в игре. В первой главе, после встречи с сестрой в офисе убитого мера, героиня бежит по коридору и забегает в небольшой зал со стеклянной стенкой и макетами под стеклянными колпаками. В эту же комнату вбегают спецназовцы, открывают огонь, и все стекла вокруг рассыпаются на множество осколков. И именно в этот момент происходит самое большое падение производительности. Этот короткий эпизод и был выбран нами, как стресс-тест. Измерение fps начиналось с момента входа в этот зал, после чего наматывались три круга по его периметру между спецназовцами и разлетающимися осколками. Для увеличения точности измерений эта непродолжительная сценка переигрывалась семь раз.


Результаты более чем прискорбны. Даже с разгоном самые мощные из рассматриваемых процессоров не могут обеспечить приемлемый уровень производительности. Некоторое преимущество четырехъядерных процессоров заметно (Core 2 Quad Q8200 в номинале быстрее Core 2 Duo E7400), но ситуация очень напоминает то, что мы видели чуть выше в Unreal Tournament 3, когда небольшие преимущества Core 2 Quad проявляются только среди низкочастотных моделей. Да и график загрузки процессора тоже напоминает то, что мы видели ранее в UT 3. Хоть и задействованы все ядра, но нагружены они не полностью.



Целесообразность использования NVIDIA PhysX без обработки средствами видеокарты в этой игре под большим вопросом. Что дает данная технология? Осколки стекол не просто отрисовываюся видеокартой, но и вступают физическими объектами, благодаря чему они разлетаются более эффектно, а стекло осыпается частями, в зависимости от места, куда в него попали. Но на самом деле, это выглядит не намного красивее, чем то же самое без активации NVIDIA PhysX (если не искать преднамеренно, то и не заметишь). Также симулируется физика материалов: полиэтилен, которым обтянуты какие-то ящики или строительные леса, колышется от ветра и рвется лоскутами. А ведь колышущиеся ткани были еще Splinter Cell Pandora Tomorrow, в который автор этих строк комфортно играл на (страшно сказать) процессоре Athlon Barton! Ну а то, что дырки от пуль и лоскутки болтаются — это да, признаем, достижение. Вот только не стоят эти достижения того чтобы вместо стабильных100 кадров играть с просадками до 10.

Cryostasis: Sleep of Reason (Анабиоз)


Ну и напоследок мы оставили самый тяжелый игровой тест для наших процессоров, который проводился в специальном Cryostasis TechDemo в разрешении 1024х768 на низких настройках Low.


Результаты такие, что прямо слезы на глаза наворачиваются — самое настоящее слайд-шоу со всеми процессорами, и даже с разгоном. Судя по результатам, дополнительные два ядра не приносят какой-либо пользы, точно так же как и разгон не спасает ситуацию, потому как если ориентироваться на полученный прирост от него, то чтобы получить более-менее терпимый результат пришлось бы разгонять Core 2 Duo до частот 6 ГГц и выше.

В самой же игре не все так плохо, как в этом бенчмарке. Не случайно он получил название TechDemo, поскольку демонстрирует тот максимум, который можно получить от движка. И если разлетающиеся банки или бьющийся стеклянный столик уж точно не впечатляют, то симуляция воды в этой демке выглядит великолепно, и аналогов этому нет. Вода стекает каплями, которые отскакивают от одежды, разлетаются по коридору, стекают в низину и собираются в лужицы. Вода не просто отрисовываетеся какими-то шейдерными программами, а каждая ее капля выступает реальным физическим объектом со своими физическими свойствами, которые и обусловливают ее поведение, и то, куда она упадет и стечет. Но это лишь первый шаг на пути симуляции реальной воды в играх, ведь в Cryostasis TechDemo она хоть и выглядит потрясающе, но все еще нежизненно, кажется какой-то более густой. Да и сам факт, что поведение этой воды не зависит от мокрых поверхностей (которые изображены с помощью традиционных шейдеров), делает ее немного отстраненной. Выходит, что есть и «шейдерная» водная поверхность и «физическая» вода, которые вместе никак не сочетаются и не влияют друг на друга. Но на фоне Mirror’s Edge, работа физического движка в этой игре впечатляет больше.

В реальной игре подобной подробной симуляции воды вы и не встретите, что и неудивительно, ведь если бы разработчики реализовали весь максимум физического движка в игре, то тогда поиграть в нее владельцы видеокарт Radeon уж точно бы не смогли и наблюдали такое же слайд-шоу, как и в нашем тесте. Так что в самой игре, в которой многие «фишки» физического движка остались за кадром, fps будет значительно выше, но соотношение между процессорами останется то же.
Итоговые сравнительные графики

Попытаемся подвести некоторые итоги нашего тестирования и для начала определить зависимость производительности в различных приложениях от архитектуры ядра и объема кэша L2. Для наглядности эта зависимость относительно Core 2 Duo E8400 изображена на графиках, где в процентах (ось ординат) наглядно видна разница между разными CPU.


В прикладных программах или синтетических бенчмарках разница иногда очень невелика или наоборот огромна, так что на графике некоторые результаты сливаются. Для пущей наглядности соотношения между процессорами мы еще отобразили их в отдельной таблице. Здесь уже дельта выражена не относительно Core 2 Duo E8400, а относительно самого слабого процессора, чтобы избежать отрицательных результатов и упростить при необходимости быстрое вычисление разницы между какими-то процессорами из середины списка.

Сравнительная таблица производительности в прикладных программах при одинаковом множителе/FSB:

Allendale 1M Allendale 2M Wolfdale 2M Wolfdale 3M Wolfdale 6M Yorkfield 4M Kentsfield 8M Yorkfield 12M
PCMark 0,00 0,10 1,20 1,20 3,00 14,84 15,83 16,41
SuperPi 0,00 18,73 26,25 26,82 29,05 30,11 35,66 29,21
PHP benchmark 0,00 1,17 1,17 2,34 2,34 2,96 3,57 3,57
Fritz Chess 0,00 2,20 3,82 4,68 6,56 94,56 94,66 100,72
WinRAR 0,00 5,50 5,50 5,50 17,20 38,89 42,57 53,62
7-Zip 0,00 3,24 3,34 4,44 8,74 87,88 95,74 97,12
RenderBench 0,00 0,00 1,34 1,64 1,64 1,77 0,54 1,77
POV-Ray 1CPU 0,00 0,10 1,92 1,92 1,92 2,02 0,52 2,08
POV-Ray xCPU 0,00 0,18 2,14 2,36 2,40 99,60 96,95 100,40
CineBench 1CPU 0,00 3,66 9,84 11,58 12,00 9,92 5,43 11,91
CineBench xCPU 0,00 4,52 11,49 13,09 14,09 90,89 85,16 99,51
x264 Benchmark 0,00 1,65 4,04 5,23 5,65 86,65 84,94 90,57
VirtualDub 0,00 0,55 7,75 10,87 20,48 27,21 27,02 33,75
Adobe Photoshop 0,00 3,97 7,14 9,55 8,73 27,09 28,11 29,73

Игровые результаты для наглядности разбиты на два графика.


Выводы

По итогам нашего тестирования можно отметить, что основное преимущество четырехьядерных процессоров среди прикладных программ заметно в узкоспециализированных приложениях. В 3D-рендеринге прирост от дополнительных двух ядер достигает 85-95 процентов. В более повседневных программах эта разница меньше: в Adobe Photoshop преимущество Core 2 Quad в среднем около 20% над двухъядерными аналогами, в VirtualDub — 15%. В двух популярных и распространенных архиваторах четырехъядерные модели выигрывают от 30 до 80% в сравнении с двухъядерными моделями при аналогичных параметрах. Преимущество более прогрессивной архитектуры Wolfdale над Allendale иногда исчисляется 1-3%, достигая максимальной разницы в 7% лишь в CineBench и 8% в Super Pi.

Наиболее сильно зависимость от объема кэша L2 проявляется в игровых приложениях. На итоговых сравнительных графиках видно, что 1 МБ кэша архитектуры Conroe катастрофически не хватает и в некоторых играх это приводит к 16-26% отставанию Allendale 1M от Wolfdale 6M, и даже доходит до 10% разницы с ближайшим собратом в лице Allendale 2M. Преимущество Wolfdale над Allendale в играх в среднем составляет 1-6 %. Для многих игр вполне достаточно двухъядерного процессора с частотой от 3 ГГц. Но самые последние игровые приложения выводят в лидеры Core 2 Quad. В частности для GTA4 достаточно или какого-нибудь младшего Core 2 Quad или Core 2 Duo только с разгоном под 4 ГГц. В этом же приложении мы видим, что с повышением качества и дальности прорисовки отрыв четырехъядерных процессоров лишь увеличивается. Это, кстати, наглядный пример целесообразности тестов процессоров и в высоких разрешениях для тех, кто все еще считает, что их надо сравнивать с 800х600 и в играх двухлетней давности. Похожая ситуация складывается и в Xenus 2 — при разрешении 1280х1024 разница между процессорами немного больше, чем в самом низком разрешении, когда система приходится обрабатывать меньше полигонов и объектов. Также заметна тенденция, когда при переходе к более тяжелых графическим режимам разница между старшими моделями хоть и уменьшается (сказывается недостаточная мощность видеокарты), но отставание младших моделей с невысоким объемом кэша (особенно Allendale-1M) лишь увеличивается. Именно по этой причине Pentium E2ххх можно вычеркнуть из списка «игровых» процессоров. Весьма спорным выглядит и использование NVIDIA PhysX. Не всегда «овчинка стоит выделки» и без мощной видеокарты NVIDIA средствами CPU пока что нельзя добиться приемлемой производительности в играх активно использующих эту технологию.

Есть правда и игры, которые практически не зависят от процессора — Tomb Raider: Underworld или Devil May Cry 4 . Но на современном этапе их немного, поэтому мы их просто не включали в тестирование.

Если рассматривать процессоры без возможности разгона (хотя разгон Core это святое дело каждого его обладателя), то минимальный игровой вариант — это Core 2 Duo E7400. Более слабые модели не могут обеспечить приемлемую производительность в играх, да и в прикладных программах демонстрируют низкие результаты. С разгоном же Pentium E5200 легко компенсирует отставание от старших моделей неплохим разгонным потенциалом (благодаря ядру Wolfdale). Но в самых требовательных играх даже с разгоном производительность этого процессора (как и более старших на базе Wolfdale-3M) ограничивается невысоким объемом кэш-памяти. Pentium E5200 и Core 2 Duo E7400 легко обходят результаты Core 2 Duo E8400, но с разогнанным им же они никак не могут поспорить. Еще одним весомым плюсом старших Core 2 Duo E8ххх выступает и разгонный потенциал, который зачастую выше чем у младших моделей Wolfdale, а, учитывая что даже при частоте на 100 МГц ниже этот процессор почти всегда обгоняет Pentium E5200 и Core 2 Duo E7400 на 4,1 ГГц, то становится ясно, что цену свою старшие модели Core 2 Duo вполне оправдывают.

Некоторым «ограничителем» младших моделей Wolfdale явно выступает невысокая частота FSB, что мы отчетливо увидели в некоторых тестах, когда значительное повышение частоты FSB при небольшом разгоне процессора приводило к ощутимому росту производительности. Так что с разгоном этих моделей (да и всех Core 2 Duo) необходимо пытаться достичь максимального значения по шине. Даже если вы и противник разгона, то лучше вам все же поднять частоту FSB без увеличения тактовой частоты процессора, снижая множитель, что позволит вам увеличить производительность процессора. Причем для Wolfdale-3M это будет еще более актуально чем для Wolfdale-2M, не смотря на то, что у первого изначально FSB выше. В полной мере сказанное актуально и для Wolfdale-6M, частота FSB которого возможно и достаточна для номинальных частот, но будет ограничивать его «потенциал» с разгоном.

Главным минусом всех Pentium E является низкий FSB Wall, как на ядре Allendale так и на Wolfdale. Да и младшие Core 2 Duo в этом плане тоже не далеко ушли. Так что и с этой точки зрения лучшим выбором будет Core 2 Duo E8ххх, у которых FSB Wall всегда выше, что в сочетании с лучшим разгонным потенциалом делает эту серию процессоров лучшим выбором для оверклокера. Единственным препятствием может выступить низкий множитель у младших моделей этой серии. Так что лучше обратить внимание на рассмотренный нами Core 2 Duo E8400 и более старшие модели, на которых можно будет легко достичь частоты свыше 4 ГГц даже на средней материнской плате.

Core 2 Quad Q9450 в многопоточных программах всегда является лидером. Даже в однопоточных приложениях и играх он почти не уступает Core 2 Duo E8400. В однопоточных задачах из 12 МБ разделяемого кэша второго уровня используется 6 МБ, делая его аналогом Core 2 Duo E8200. Но во многих современных играх (GTA4, Xenus 2, FarCry 2, World in Conflict) дополнительные два ядра выводят этот процессор в безоговорочные лидеры даже при 500-мегагерцовой разнице между ним и Core 2 Duo E8400 в разгоне. Там же, где дополнительные ядра не приносят толку, с небольшим разгоном этого процессора хватит для любого игрового приложения.

Те, кто в свое время приобрел Core 2 Quad Q6600 явно не прогадали. Сейчас эти пользователи могут в полной мере насладиться тем же GTA 4, а хороший разгонный потенциал позволяет этому процессору соперничать и с Core 2 Quad Q9450 (несмотря на меньший объем кэш-памяти L2 и более старое ядро Kentsfield). Результаты разгона этого процессора при использовании воздушного охлаждения могут поспорить даже с разгоном Core 2 Quad Q9450, ведь мало какой Yorkfield будет стабильно работать на тех же 3,8 ГГц с обычным кулером на тепловых трубках. Отставание Kentsfield от Yorkfield 12M в игровых приложениях колеблется от 2 до 8%, поэтому иногда результаты Core 2 Quad Q6600 на 3,8 ГГц оказываются даже чуточку ниже чем у Core 2 Quad Q9450 на 3,5 ГГц.

А вот на номинальной частоте Core 2 Quad Q6600 выглядит не намного интереснее чем Core 2 Quad Q8200. Второй почти всегда показывает практически идентичные результаты, не смотря на меньшую частоту и объем кэша. На стороне Core 2 Quad Q8200 оказывается более прогрессивная архитектура Penryn и более высокая частота шины FSB. С точки же зрения разгона Core 2 Quad Q8200 абсолютно неинтересен из-за очень низкого множителя, да и судя по напряжению необходимому ему для 3,05 ГГц разгонный потенциал его меньше чем у старших моделей Core 2 Quad.

Анализируя общую ситуацию с современными играми можно отметить, что эра многоядерных процессоров уже началась. Есть некоторые игры, производительность в которых существенно выше на четырехъядерных процессорах. GTA 4 стал именно тем «Рубиконом», после которого все пользователи обратят свой взгляд на многоядерные процессоры. Но ситуация на рынке такова, что на данный момент нет недорого оптимального процессора Intel, который мог бы обеспечить высокую производительность и в том же GTA4 и тех играх, которые не используют более двух ядер. Для пользователей, которые не будут разгонять свой процессор, минимальным игровым вариантом станет лишь Core 2 Quad Q9450, поскольку мощности младших моделей катастрофически не хватит в приложениях использующих одно-два ядра. Такие привлекательные до недавнего времени младшие модели Wolfdale (Pentium E5200 или Core 2 Duo E7300), которые при низкой цене позволяли с разгоном добиться высокого уровня производительности во всех играх, сейчас не в состоянии полноценно конкурировать со старшими четырехъядерными моделями в том же GTA4. Единственным достаточным бюджетным вариантом будет лишь Core 2 Quad Q6600, но опять же, только с разгоном. Так же неплохим выбором все еще могут стать Core 2 Duo E8ххх, которые с разгоном вполне в состоянии обеспечить высокую производительность в GTA4, Xenus 2 и других процессорозависимых играх, а в однопоточных приложениях вообще вне конкуренции. Но вот надолго ли их хватит до выхода какого-нибудь GTA 5? Это уже под вопросом.

На фоне такого дефицита «универсальных» игровых недорогих процессоров Intel, у AMD есть возможность отвоевать свою долю рынка, которая давно предлагает многоядерные процессоры по более низким ценам. Но помогут ли дополнительные ядра компенсировать AMD Phenom более низкую производительность архитектуры, мы выясним уже в одной из будущих статей.

Благодарим следующие компании за предоставленное тестовое оборудование:

  • PCshop Group процессоры Pentium E2220, Core 2 Duo E8400, Core 2 Quad Q9450;
  • DC-Link , в частности Александра aka Punisher, за процессор Core 2 Duo E7400;
  • Железо за процессор Core 2 Quad Q8200;
  • за жесткий диск WD3200AAKS;
  • SerOl Distribution за видеокарту Point of View GF9800GTX 512MB GDDR3 EXO.

В этой статье будет рассмотрен отличный центральный процессор 8-летней давности - Intel Характеристики этого чипа на сегодняшний день нельзя уже назвать актуальными, но он все еще отлично смотрится как основа для системных блоков офисного или бюджетного назначения. Именно в этом контексте и будут рассмотрены его спецификации.

Ниша процессора

На момент начала продаж этот процессор принадлежал к решениям среднего класса. Большая часть существующего софта на тот момент на нем могла вполне успешно функционировать. Конечно, некоторые игрушки на этом аппаратном обеспечении шли не на максимальных настройках, но все же они в обязательном порядке запускались. Но сейчас ситуация изменилась. В некоторых наиболее свежих и самых требовательных игрушках присутствует проверка на наличие 4 ядер, а в этом чипе их всего 2. Поэтому такой софт на нем не пойдет. Как результат, такие чипы относятся к полупроводниковым решениям начального класса.

Варианты поставки

В двух возможных вариантах комплектации поставлялся Core 2 DUO E7400. Описание на официальном сайте производителя указывает на ВОХ и TRAIL. Второй из них был более скромным и включал следующее:

  • Сам чип.
  • Фирменную наклейку с логотипом модели ЦПУ.
  • Гарантийный талон от производителя.
  • Краткое руководство по использованию полупроводникового продукта.

Первый же вариант был более расширенным и, кроме всего ранее перечисленного, включал следующее:

  • Фирменный кулер.
  • Термопасту.

Процессорный разъем. Общие характеристики ЦПУ

В основной и наиболее распространенный процессорный разъем на то время должен был устанавливаться Intel Core 2 DUO E7400.

Характеристики указывают на поддержку LGA775. На сегодняшний день все процессоры этого сокета морально устарели и сняты с производства. Но все еще есть его складские запасы, а потому купить такую полупроводниковую продукцию все еще можно. Данный процессор имеет всего 2 вычислительных модуля. Также у него отсутствует поддержка технологии НТ и 2-го увеличения количества логических потоков на уровне софта в этом случае невозможно получить.

Технология производства

По наиболее передовому техпроцессу в 2008 году производился Intel Core 2 DUO E7400. Характеристики этого кремниевого кристалла указывают на нормы допуска в 45 нм. Сейчас наиболее передовые ЦПУ уже изготавливаются по 14 нм. С учетом разницы в 3 раза и с учетом временного интервала в 8 лет получается не такая уж и большая разница между героем данного обзора и бюджетными центральными процессорами последнего поколения.

Кеш

Всего лишь 2 уровня кеша есть в «Кор 2 DUO E7400». В 2008 году среди чипов для обычных персональных компьютеров 3-уровневую кеш-память встретить еще было невозможно. Поэтому в этом плане данный чип чем-то особенным не выделялся. Сейчас это одна из причин, по которой этот ЦПУ не может соперничать по быстродействию с наиболее доступными процессорами последних нескольких поколений. Первый уровень имел общий размер в 64 Кб. При этом они были разделены на 2 равные части, размер каждой из которых был равен 32 Кб. Второй же уровень кеша был общим для всех вычислительных ресурсов ЦПУ и имел размер 3 Мб.

Оперативная память

Под использование в сочетании с памятью DDR2 был рассчитан процессор Intel Core 2 DUO E7400. Характеристики данного ЦПУ указывают на рекомендованные частоты в 800 МГц или 1,066 МГц. Контроллер оперативной памяти, в отличие от нынешних чипов, не входил в состав полупроводникового кристалла ЦПУ. Поэтому его конкретное исполнение зависело от набора системной логики на материнской плате.

Частота. Разгон

Значение тактовой частоты для данного полупроводникового решения было установлено на 2,8 ГГц. Множитель же у этого ЦПУ установлен на значении 10,5. Это значение зафиксировано и простым изменением этого параметра разогнать этот чип невозможно. Поэтому единственным способом увеличить быстродействие такого ПК остается увеличение частоты системной шины на материнской плате. Ее значение установлено на 266,7 МГц. На практике с качественной системой охлаждения частоту системной шины можно было поднять до 390 МГц и получить для чипа уже 4,1 ГГц. В процентном отношении это 46%. Как результат, можно отметить что у этого ЦПУ был отменный разгонный потенциал.

Отзывы. Цена

В 110 долларов в начале продаж вариант комплектации TRAIL был оценен производителем данного чипа. В 125 долларов была оценена более продвинутая комплектация ВОХ Intel Core 2 DUO E7400. Характеристики (отзывы владельцев и специалистов это подтверждают) у этого ЦПУ весьма скромные, и он уступает по быстродействию даже наиболее бюджетным процессорам последнего поколения. Ключевая разница здесь кроется в частоте и кеш-памяти, которая на текущий момент имеет уже трехуровневую организацию. Также нужно учесть и то, что этот процессор выпущен достаточно давно, а потому рассматривать его как основу для игровой системы не стоит. Он устарел и подходит лишь для решения наиболее простых задач: воспроизведение видео- или аудиозаписей, веб-серфинг и офисные программы. Также к этому списку можно добавить нынешние наименее требовательные или даже устаревшие старые игрушки. Чего-то большего из этого полупроводникового ЦПУ выжать не получится.

Итоги

Для 2008 года отличным процессорным решением был Intel Core 2 DUO E7400. Характеристики у него действительно были на то время неплохими. Но сейчас этот ЦПУ устарел как морально, так и физически. За прошедшее время он перешел из ниши продуктов среднего класса в бюджетный сегмент. Как результат, на таких персональных компьютерах можно лишь решать сейчас наиболее простые задачи. Ну а для чего-то большего использовать такую вычислительную систему не получится.

ВведениеС момента появления на рынке десктопных процессоров с микроархитектурой Core прошёл уже почти год. За это время компания Intel значительно расширила ассортимент предлагаемых двухъядерных процессоров Core 2 Duo и вывела на рынок четырёхъядерные CPU семейства Core 2 Quad. Однако при этом предельная тактовая частота таких CPU не претерпела никаких изменений. Анонсированный год назад Core 2 Extreme X6800, работающий на частоте 2.93 ГГц, до сих пор остаётся самой скоростной моделью в ряду двухъядерных процессоров с микроархитектурой Core. Значит ли это, что Intel совсем отказалась от идеи наращивания производительности простым увеличением частоты CPU и делает ставку исключительно на увеличение количества ядер? Не совсем. Дело в том, что увеличение частоты неминуемо сопряжено с ростом тепловыделения процессоров, которое, в отсутствии конкуренции в сегменте высокопроизводительных решений, Intel хочет держать в пределах 65-75 Вт (для двухъядерных моделей). Благодаря этому процессоры c микроархитектурой Core могут похвастать не только непревзойдённой производительностью, но и хорошим сочетанием быстродействия и тепловыделения. Что, в свете выхода на первый план соотношения "производительность на Ватт" делает Core 2 Duo и Core 2 Extreme весьма выигрышными продуктами в глазах потребителей.

Впрочем, в ближайшее время нас ожидает небольшое увеличение тактовых частот процессоров семейства Core 2. И связано оно будет с освоением ими более высокой частоты шины Quad Pumped Bus, 1333 МГц. Сопряжённое с этим увеличение частоты FSB до 333 МГц волей-неволей заставляет Intel пересмотреть параметры своих продуктов: частота старших моделей в линейках двухъядерных и четырёхъядерных CPU возрастёт до 3 ГГц. Конечно, прирост тактовой частоты старших моделей процессоров на 2.4% вряд ли можно назвать впечатляющим достижением. Однако вместе с увеличением частоты и пропускной способности шины он может повлечь за собой более серьёзный прирост быстродействия.

В этом материале мы как раз и познакомимся с тем, каким выигрышем в производительности будут способны похвастать новые процессоры с частотой шины 1333 МГц. Поскольку на данный момент эти CPU остаются официально неанонсированными, в сегодняшнем материале мы предварительно рассмотрим лишь двухъядерные модели Core 2 Duo. Более полные данные о производительности двухъядерных и четырёхъядерных процессоров с частотой шины 1333 МГц мы опубликуем несколько позднее, после их официального представления, намеченного, ориентировочно, на середину июля.


Линейка процессоров с ускоренной до 1333 МГц шиной будет включать в себя четыре CPU. Это – четырёхъядерный трёхгигагерцовый Core 2 Extreme QX6850 и три модели двухъядерных процессоров Core 2 Duo с модельными номерами E6850, E6750 и E6550 и частотами 3.0, 2.66 и 2.33 соответственно. Именно в таком виде эта линейка и просуществует до следующего года, когда она начнёт постепенно вытесняться перспективными CPU семейства Penryn.

Новые процессоры

В преддверии будущего анонса в нашей лаборатории оказались все три модели Core 2 Duo, поддерживающие частоту шины 1333 МГц. Основные характеристики этих CPU мы обобщили в следующей таблице:


Как видим, никаких инноваций, кроме увеличенной частоты шины, новые процессоры не предлагают. Бросается в глаза лишь новый степпинг ядра G0, который будет использоваться в составе всех Core 2 Duo с 1333-мегагерцовой шиной. Этот степпинг ядра не предлагает никаких технологических усовершенствований по сравнению с традиционным ядром степпинга B2, но, согласно информации, предоставляемой Intel, он имеет слегка улучшенный частотный потенциал и сниженное тепловыделение и энергопотребление.
Диагностическая утилита CPU-Z также не выявляет в новых процессорах никаких особенностей.


Core 2 Duo E6850


Core 2 Duo E6750


Core 2 Duo E6550


Для совместимости с новыми процессорами от материнской платы требуется две вещи: поддержка частоты FSB 333 МГц и поддержка ядра ревизии G0 в BIOS. Официально совместимы с новыми CPU все материнские платы, основанные на чипсетах Intel "третьей серии" и на наборах логики семейства NVIDIA nForce 600i. Кроме того, способны работать с новыми процессорами и многие материнские платы для энтузиастов, основанные на более ранних чипсетах от Intel. Соответствующую информацию о совместимости можно найти на сайтах производителей материнских плат.

В связи с увеличением частоты шины новые CPU при работе технологий семейства Demand Based Switching (в частности, Enhanced Intel SpeedStep и Enhanced Halt State) снижают свою частоту только до 2.0 ГГц. Соответственно, падение их тепловыделения и энергопотребления при переходе в экономичные состояния будет несколько слабее, чем у процессоров с шиной 1067 МГц, которые при низкой загрузке снижают частоту до 1.6 ГГц. Это подтверждают и сделанные нами измерения, в которых мы сравнили энергопотребление аналогичных систем с процессорами Core 2 Duo E6750 и Core 2 Duo E6700, работающих на одинаковой частоте 2.66 ГГц при различной частоте шины.


Действительно, в состоянии покоя при включённой технологии Enhanced Intel SpeedStep система с процессором Core 2 Duo E6700 с частотой шины 1067 МГц сбрасывает своё тепловыделение несколько сильнее, нежели аналогичная платформа с Core 2 Duo E6750. Но, как показывает практика, в целом новые процессоры всё равно оказываются более экономичными благодаря использованию ядра нового степпинга G0.

Описание тестовых систем

Производительность новых двухъядерных процессоров Core 2 Duo E6850, E6750 и E6550 мы решили сравнить со скоростью CPU из верхней части текущей линейки Core 2 Duo. Кроме того, в сравнении будет фигурировать и AMD Athlon 64 X2 6000+, хотя его можно назвать конкурентом разве только для Core 2 Duo E6600 и Core 2 Duo E6550.

В целом, в составе тестовых систем нами были использованы следующие комплектующие:

Процессоры:

AMD Athlon 64 X2 6000+ (Socket AM2, 3.0GHz, 2x1024KB L2, Windsor);
Intel Core 2 Duo E6850 (LGA775, 3.0GHz, 1333MHz FSB, 4MB L2, Conroe);
Intel Core 2 Extreme X6800 (LGA775, 2.93GHz, 1067MHz FSB, 4MB L2, Conroe);
Intel Core 2 Duo E6750 (LGA775, 2.66GHz, 1333MHz FSB, 4MB L2, Conroe);
Intel Core 2 Duo E6700 (LGA775, 2.66GHz, 1067MHz FSB, 4MB L2, Conroe);
Intel Core 2 Duo E6600 (LGA775, 2.4GHz, 1067MHz FSB, 4MB L2, Conroe);
Intel Core 2 Duo E6550 (LGA775, 2.33GHz, 1333MHz FSB, 4MB L2, Conroe).


Материнские платы:

ASUS M2N32-SLI Deluxe (Socket AM2, NVIDIA nForce 590 SLI);
ASUS P5K Deluxe (LGA775, Intel P35).


Память: 2048MB DDR2-800 SDRAM (Mushkin XP2-6400PRO, 2 x 1024 MB, DDR2-800, 4-4-4-12);
Графическая карта: OCZ GeForce 8800GTX.
Дисковая подсистема: Western Digital WD1500AHFD.
Блок питания: SilverStone SST-ST85ZF (850 Вт).
Операционная система: Microsoft Windows Vista Ultimate x86.

Тестирование выполнялась при настройках BIOS Setup материнских плат, установленных на максимальную производительность.

Влияние частоты шины на производительность Core 2 Duo

Очевидно, что от перехода на 1333-мегагерцовую шины выиграют в первую очередь четырёхъядерные процессоры. Ведь они состоят из пары двухъядерных половинок, каждая из которых имеет собственный кэш второго уровня, пересылка данных между которыми выполняется через оперативную память посредством фронтальной шины. Что же касается двухъядерных процессоров Core 2 Duo, то они получат прирост производительности только благодаря увеличению пропускной способности магистрали процессор-память, которая с переводом шины на частоту 1333 МГц возрастает с 8.5 до 10.7 Гбайт в секунду.

В этом свете чрезвычайно любопытно было бы выяснить, какое влияние на производительность процессоров Core 2 Duo в распространённых приложениях оказывает частота процессорной шины. Для ответа на этот вопрос мы сравнили быстродействие процессора Core 2 Duo E6750 с частотой шины 1333 МГц (8 x 333 МГц) и Core 2 Duo E6700 с частотой шины 1067 МГц (10 x 266 МГц). Оба процессора имеют одинаковую тактовую частоту 2.66 ГГц.


Полученные результаты явно говорят о том, что перевод двухъядерных процессоров с микроархитектурой Core на использование более скоростной шины даёт лишь незначительный эффект в плане роста быстродействия системы. Величина получаемого выигрыша в большинстве приложений составляет лишь 1-2%. Максимальное же ускорение наблюдается в Quake 4, где оно достигает почти 5%, но это – исключение.

Производительность

Futuremark: синтетические тесты












После выяснения того обстоятельства, что увеличение пропускной способности процессорной шины влечёт за собой лишь незначительный прирост быстродействия в системах с двухъядерным процессором, полученные результаты вопросов не вызывают. Линейки старых и новых Core 2 Duo практически всегда выстраиваются на приведённых выше и последующих диаграммах в строгом соответствии с тактовой частой процессоров.

Офисные приложения









Вновь – никаких сюрпризов. Процессор Core 2 Duo E6850 обгонят Core 2 Extreme X6800 на 2-3%, Core 2 Duo E6750 опережает Core 2 Duo E6700 на 1-2%, а Core 2 Duo E6550 на 1-2% отстаёт от Core 2 Duo E6600.

Кодирование видео и аудио












Аналогичное распределение сил наблюдается и в задачах кодирования медиа-контента. Кстати, здесь обращает на себя внимание низкий результат AMD Athlon 64 X2 6000+, который в приложениях этого типа не может соперничать с производительными CPU конкурента.

Обработка изображений, аудио и видео









Возможно, больший выигрыш в производительности 1333-мегагерцовая шина способна дать в системах, снабжённых DDR3 памятью, обладающей более высокой пропускной способностью, нежели DDR2. Однако пока что эти системы не нашли широкого распространения. Впрочем, в ближайшее время мы уделим внимание и тестированию новых CPU с DDR3 SDRAM, что позволит сделать окончательный вывод о пользе 25-процентного прироста частоты FSB.

Финальный рендеринг






Легко объяснимая картина складывается в приложениях для рендеринга. Здесь основное влияние на результат оказывает тактовая частота процессора.

Научные расчёты


Процессоры Athlon 64 X2 традиционно славятся своими высокими показателями в тесте ScienceMark 2.0, измеряющем производительность систем при использовании методов молекулярной динамики. Что же касается процессоров Core 2 Duo, то распределение сил между ними и в этом тесте легко вполне естественно и легко воспринимается без дополнительных объяснений. Кстати, хочется отметить и хорошую адекватность процессорных номеров двухъядерных CPU. Практически всегда они правильно характеризуют относительную производительность процессоров семейства Core 2 Duo.

Игровые приложения















Никаких неожиданностей нет и в играх. Однако внимания заслуживает тот факт, что здесь зачастую процессор Core 2 Duo E6550 обгоняет Core 2 Duo E6600. Это значит, что для игр 1333-мегагерцовая шина оказывается важнее дополнительных 67 МГц тактовой частоты.
Кроме нескольких реальных игр в число геймерских тестов мы включили результаты бенчмарка, основанного на движке Valve Source, который будет использоваться в будущих играх. Он оценивает скорость работы при расчёте физики окружающей среды.


Также, в число игровых тестов мы добавили и шахматный бенчмарк, использующий известный движок Fritz 9.

Разгон

Результаты тестов производительности оказались вполне ожидаемы и малоинтересны. Однако быстродействие – это не главная интрига сегодняшнего обзора. Гораздо интереснее посмотреть на то, как новые процессоры будут разгоняться, учитывая, что в их основе лежит ядро нового степпинга G0, которое, по идее, должно обладать улучшенным частотным потенциалом. Впрочем, с другой же стороны из-за возросшей до 333 МГц частоты FSB новые Сore 2 Duo могут разгоняться и несколько хуже предшественников. Ведь их множители сравнительно низки, а значит, возрастает вероятность встречи с таким неприятным явлением как FSB Wall.

Чтобы внести в этот вопрос некоторую ясность, мы решили дополнительно изучить частотный потенциал поступивших в лабораторию процессоров. Для оверклокерских экспериментов мы использовали ту же самую платформу с материнской платой ASUS P5K Deluxe, что и во время тестов производительности. Эта плата хорошо подходит для разгона процессоров с 1333-мегагерцовой системной шиной, так как может похвастать сохранением хорошей стабильности при значительном увеличении частоты фронтальной шины. Для рассматриваемых в статье процессоров приходится использовать именно этот метод разгона, так как они, в отличие от процессоров Core 2 Extreme, обладают множителем, ограниченным сверху штатным значением.
Для отвода тепла от CPU во время оверклокерских экспериментов мы применяли кулер Zalman CMPS9700 LED. Проверка стабильности системы при разгоне выполнялась утилитой SP2004/ORTHOS.

Первым на тестовый стенд отправился Core 2 Duo E6850. При повышении его напряжения питания до 1.5 В этот процессор смог заработать на частоте 3.79 ГГц (9 x 420 МГц), сохраняя абсолютную стабильность.


Таким образом, старшая модель из тройки двухъядерных новинок без особых усилий и с использованием воздушного охлаждения позволила нарастить свою частоту на 26%. Это – весьма неплохой результат для топовой модели CPU. Например, побывавший в своё время в нашей лаборатории экземпляр Core 2 Extreme X6800 (основанный на ядре ревизии B2) мог стабильно функционировать лишь на частоте 3.6 ГГц.

Второй эксперимент по разгону был проведён с процессором Core 2 Duo E6750, имеющим номинальную частоту 2.66 ГГц и штатный множитель 8x. Полученная для этого CPU максимальная частота FSB при повышении напряжения питания до 1.5 В составила 461 МГц.


Таким образом, тестовый процессор Core 2 Duo E6750 смог покорить частоту 3.69 ГГц, что на 38% превышает его заявленную в спецификации тактовую частоту. Это тоже можно было бы назвать хорошим результатом, если бы не одно но. Достигнутая при разгоне частота FSB, равная 461 МГц оказалась для нашего процессора границей FSB Wall, что было подтверждено неудачными попытками её преодолении при снижении множителя. Иными словами, проблема FSB Wall присуща и новым процессорам с 1333-мегагерцовой шиной, основанным на ядре степпинга G0. К сожалению.

Третий процессор, Core 2 Duo E6550, наверняка вызовет особый интерес у оверклокеров. Ведь это – самый младший носитель ядра степпинга G0. Его номинальная тактовая частота равна 2.33 ГГц, он использует множитель 7x. Именно поэтому для разгона этого CPU особенно важна качественная материнская плата, способная разгонять шину FSB до частот свыше 500 МГц. Используемая нами ASUS P5K Deluxe к таким платам относится, на ней мы смогли разогнать наш процессор до максимума, который при повышении напряжения до 1.5 В составил 3.57 ГГц.


Для достижения такого результата частота FSB была увеличена до 510 МГц, что дало вполне весомый прирост частоты относительно номинальной, составляющий 53%. Заметим, что разгон в данном случае был ограничен возможностями процессора, а не достижением границы FSB Wall.
Таким образом, новые процессоры Core 2 Duo с 1333-мегагерцовой шиной, разгоняются очень неплохо. Новое ядро степпинга G0 в этом плане не подкачало.

Выводы

Подведём итоги. Компания Intel позиционирует перевод процессоров Core 2 Duo на использование более скоростной шины с частотой 1333 МГц как ещё один шаг, направленный на увеличение производительности этого семейства. Отчасти так оно и есть. Как мы могли убедиться, рост частоты шины, безусловно, вызывает некоторый прирост производительности в большинстве приложений. Но, к сожалению, назвать его ощутимым вряд ли возможно, так как его величина редко превышает ничтожные 3%.
Впрочем, вместе с изменением частоты шины некоторое преимущество новых процессоров над старыми обуславливается и изменением сетки тактовых частот. Например, частота старшей модели Core 2 Duo E6850 теперь выросла до 3.0 ГГц, в то время как до сих пор максимальная частота двухъядерного процессора с микроархитектурой Core ограничивалась планкой в 2.93 ГГц. Этот факт также сказывается на быстродействии, что в сумме с использованием более быстрой шины говорить о росте скорости старших процессоров Core 2 Duo позволяет уже с большей уверенностью. Иными словами, появление процессоров Core 2 Duo с шиной 1333 МГц станет очередной ступенью прогресса линейки CPU с микроархитектурой Core, который до появления перспективных процессоров семейства Penryn идёт, к сожалению, достаточно медленными темпами.

Помимо возросшей частоты шины есть у новых CPU и ещё одно приятное свойство. Они основываются на новом степпинге G0 ядра Conroe, одной из особенностей которых является улучшенный частотный потенциал. Выражается это как в более высоких границах FSB Wall, так и в лучших результатах разгона, которые можно получить с новыми процессорами. Например, наши опыту по разгону выявили работоспособность новинок на частоте порядка 3.6-3.8 ГГц с простым воздушным охлаждением. Поэтому Core 2 Duo E6850, E6750 и E6550 наверняка окажутся востребованы оверклокерами, тем более что продавать их Intel собирается по весьма демократичным ценам. Так, по предварительным данным стоимость Core 2 Duo E6850 составит $266, процессора Core 2 Duo E6750 - $183, а Core 2 Duo E6550 - $163. Таким привлекательным ценником Intel будет попутно стимулировать потребителей переходить на продукты с 1333 МГц шиной.

Core 2 Duo выбивает Athlon 64: игра закончена?

Линейка процессоров Intel основана на полностью обновлённой микро-архитектуре. Технические детали нового процессора с ядром Conroe были объявлены ещё в марте 2006 года, а первые тесты доказали, что Intel не шутит: Core 2 Duo должен стать бесспорным лидером по производительности и по соотношению производительности на ватт. Что ж, настало время отделить факты от слухов.

Intel говорит не просто об изменениях в новой микро-архитектуре процессоров , а о кардинальном обновлении. Инженеры компании взяли некоторые элементы текущей микро-архитектуры Pentium D NetBurst и добавили к ней ингредиенты, сделавшие мобильные процессоры Pentium M и Core Duo столь популярными на рынке, в результате чего и родилась новая микро-архитектура Core 2 . Ключевой целью было достижение идеального соотношения между производительностью и энергопотреблением. В принципе, такая цель как раз является прямым результатом хорошего соотношения производительности на ватт процессоров AMD, а также критики платформ Intel за чрезмерно высокое энергопотребление и требования к охлаждению.

У специалистов компьютерной индустрии тот факт, что процессоры обходят Athlon 64, вряд ли вызвал удивление. Не будем забывать о том, что Core 2 Duo - совершенно новый и современный процессор, а архитектура Athlon 64 X2 существует на рынке уже продолжительное время. Intel приложила все усилия, чтобы после двух лет лидерства Athlon 64 выпустить новый превосходный продукт, который смог бы разбить конкурента.

Что ж, сядьте поудобнее и уберите подальше от себя острые предметы. Intel стал новым лидером по производительности. Повторно описывать технические и архитектурные детали ядра Core 2 Duo "Conroe" мы не будем, а те, кому они требуются, могут посетить нашу статью с весеннего IDF . На этот раз мы внимательно отнесёмся к результатам тестов, проведём анализ и сделаем выводы. Посмотрим, какое влияние способен оказать на AMD.

Версии процессоров Core 2 Duo

27 июля выйдут четыре модели для массового рынка и один high-end процессор. Лидером по производительности станет Core 2 Extreme X6800 (будьте готовы расстаться с немалыми средствами, если пожелаете приобрести именно его), а основной ударной силой будут модели от E6300 до E6700.

Модель Core 2 Duo Тактовая частота (МГц) Множитель Частота FSB (МГЦ) Кэш L2 (Мбайт)
Core 2 Extreme X6800 2933 x11 266 (FSB1066 QDR) 4
Core 2 Duo E6700 2666 X10 266 МГц (FSB1066 QDR) 4
Core 2 Duo E6600 2400 X9 266 (FSB1066 QDR) 4
Core 2 Duo E6400 2133 X8 266 (FSB1066 QDR) 2
Core 2 Duo E6300 1866 X7 266 (FSB1066 QDR) 2

Все процессоры Core 2 Duo работают с тактовой частотой системной шины (Front Side Bus, FSB) 266 МГц, в то время как большинство моделей Pentium 4 и Pentium D используют 200-МГц шину. Поскольку за такт передаётся учетверённое количество информации (QDR), то мы получаем приятную для слуха частоту FSB1066 с пропускной способностью 8,5 Гбайт/с. За исключением процессоров начального уровня, все модели оснащены 4 Мбайт кэша L2, который используют оба процессорных ядра. Все процессоры поддерживают 64-битные расширения Intel (EM64T), мультимедийные инструкции (SSE2 и SSE3), технологию виртуализации (VT) и бит запрета выполнения (XD). Кроме этих функций, все модели поддерживают последние технологии управления энергопотреблением вроде Thermal Monitor 2 (TM2), Enhanced Halt State (C1E) и Enhanced SpeedStep (EIST).

Core 2 Extreme X6800

Процессор Extreme Edition является единственной моделью, которая позволяет менять множитель. Поэтому его легко разогнать.

Линейка Core 2 Duo

Процессоры Core 2 Duo работают на частотах от 1,86 до 2,66 ГГц.



СОДЕРЖАНИЕ