Оборудование вч связи. Принцип работы и назначение вч-каналов связи высоковольтных линий электропередач. Конструкция и состав аппаратуры

Страница 16 из 21

Конструкция линии электропередачи, определяемая ее главным назначением - передачей электрической энергии на расстояние, позволяет использовать ее для передачи информации. Высокий уровень эксплуатации и большая механическая прочность линий обеспечивают надежность каналов связи, близкую к надежности каналов по кабельным линиям связи. Вместе с тем при осуществлении по ВЛ каналов связи для передачи информации приходится учитывать особенности линий, затрудняющие их использование для целей связи. Такой особенностью является, например, наличие на концах линий оборудования подстанций, которое можно представить как цепь изменяющихся в широких пределах последовательно соединенных реактивного и активного сопротивления. Этими сопротивлениями через шины подстанций образуется связь между ВЛ, что приводит к увеличению тракта связи. Поэтому для снижения влияния между каналами и затухания с помощью специальных заградителей преграждают пути токам высокой частоты в сторону подстанций.
Значительно увеличивают затухание также ответвления от ВЛ. Эти и другие особенности линий требуют осуществления ряда мероприятий по созданию условий передачи информации.
Устройство ВЧ каналов по распределительным сетям 6-10 кВ сопряжено со значительными -трудностями из-за специфики построения сетей этих напряжений. На участках магистральных линий 6-10 к В между соседними коммутационными пунктами имеется большое число отпаек, линии секционируются разъединителями и выключателями, схемы первичной коммутации сетей нередко меняются, в том числе автоматически, из-за большей повреждаемости линий этих напряжений их надежность ниже, чем В71 35 кВ и выше. Передача сигналов в распределительных сетях зависит от многих факторов, влияющих на затухание сигнала: от длины и числа отпаек, материала проводов линии, нагрузки и др. Нагрузка может изменяться в широких пределах. При этом отключение отдельных отпаек, Как показывают исследования, иногда не только не уменьшает затухания, но, наоборот, из-за нарушения взаимной компенсации затуханий между соседними отпайками увеличивает ее. Поэтому каналы даже небольшой протяженности имеют значительное затухание и работают нестабильно. На работе каналов отрицательно сказываются также повреждения изоляторов, некачественное соединение проводов и неудовлетворительное состояние контактов коммутационной аппаратуры, Эти дефекты являются источниками помех, соизмеримых с уровнем передаваемого сигнала, что может вызывать прекращение работы канала и повреждение аппаратуры. Наличие на линиях секционирующих аппаратов приводит к полному прекращению работы ВЧ канала в случае их отключения и заземления одного из участков линии. Отмеченные недостатки существенно ограничивают, хотя и не исключают , использование линий 6-10 кВ для организации ВЧ каналов. И все-таки следует отметить, что широкого распространения ВЧ связь по распределительным сетям в настоящее время не получила.
По назначению ВЧ каналы связи по линиям электропередачи делятся на четыре группы: каналы диспетчерской связи, технологические, специальные и каналы линейно-эксплуатационной связи.
Не останавливаясь подробно на использовании и назначении каждой группы каналов, отметим, что для диспетчерских и технологические каналов телефонной связи используется в основном полоса тональных частот 300-3400 Гц <300-2300). Верхняя часть тонального спектра (2400-3400 Гц) не пользуется для передачи сигналов телеинформации. Современная комбинированная аппаратура позволяет организовать в этом спектре до четырех независимых узкополосных каналов телеииформации.
Каналы линейно-эксплуатационной связи служат для организации связи диспетчера с работающими на трассе протяженной линии электропередачи или подстанциях ремонтными бригадами, когда постоянной связи с ними нет. Для этих каналов применяется упрощенная перевозная и переносная телефонная аппаратура.
По степени сложности ВЧ каналы делятся на простые и сложные. Каналы, состоящие только из двух комплектов оконечной ВЧ аппаратуры, называют простыми. Сложные каналы имеют в своем составе промежуточные усилители или несколько комплектов оконечной аппаратуры (на одинаковых частотах).

Оборудование высокочастотных каналов связи по ВЛ.

Присоединение аппаратуры связи к проводам линии электропередачи осуществляется с помощью специальных устройств так называемой аппаратуры присоединения и обработки линии, состоящей из конденсатора связи, заградителя и элементов защиты.

Рис. 21. Схема высокочастотного канала связи по ВЛ
На рис. 21 изображена схема образования канала связи по ВЛ. Передача сигналов токами высокой частоты Осуществляется передатчиками аппаратуры уплотнения J, размещенными на обоих концах ВЛ на подстанциях А и В.
Здесь же в составе аппаратуры уплотнения 1 имеются приемники, осуществляющие прием модулированных токов ВЧ и их преобразование. Для обеспечения передачи энергии сигнала токами ВЧ по проводам достаточно обработать на каждом конце линии один провод с помощью заградителя 5, конденсатора связи 4 и фильтра присоединения 3, который соединяется с аппаратурой уплотнения 1 при помощи ВЧ кабеля 2. Для обеспечения безопасности работы персонала на фильтре присоединения при работающем ВЧ канале служит заземляющий нож 6.
Присоединение высокочастотной аппаратуры по схеме рис. 21 носит название фаза-земля. Такая схема может использоваться для образования одноканальных и многоканальных систем передачи информации. Применяются также другие схемы присоединения.
При необходимости подключения к линии электропередачи аппаратуры, установленной на трассе линии (телефонная передвижная аппаратура ремонтных бригад, аппаратура дистанционно управляемой УКВ радиостанции и т. п.), используются, как правило, антенные устройства присоединения. В качестве антенны применяются отрезки изолированного провода определенной длины или участки грозозащитного троса.
Высокочастотный (линейный) заградитель обладает высоким сопротивлением для рабочей частоты канала и служит для заграждения пути этим токам, уменьшая их утечку в сторону подстанции. При отсутствии заградителя затухание канала может увеличиться, так как небольшое входное сопротивление подстанции шунтирует ВЧ канал. Заградитель состоит из силовой катушки (реактора), элемента настройки и устройства защиты. Силовая катушка является основным элементом заградителя. Она должна выдерживать максимальные рабочие токи линии и токи КЗ. Силовая катушка изготовляется из свитых в спираль медных или алюминиевых проводов соответствующего сечения, намотанных на рейки из древесно-слоистого пластика (дельта-древесина) или стеклотекстолита. Концы реек закрепляются на металлических крестовинах. На верхней крестовине крепится элемент настройки с защитными разрядниками. Элемент настройки служит для получения относительно высокого сопротивления заградителя на одной или нескольких частотах или полосах частот.
Элемент настройки состоит из конденсаторов, катушек индуктивности и резисторов и включается параллельно
силовой катушке. Силовая катушка и элемент настройки заградителя подвергаются воздействиям при атмосферных и коммутационных перенапряжениях и КЗ. Роль защиты от перенапряжений, как правило, выполняет вентильный разрядник, состоящий из искрового промежутка и нелинейного вилитового резистора.
В электрических сетях 6-220 кВ нашли применение заградители ВЗ-600-0,25 и КЗ-500, а также заградители со стальным сердечником типов ВЧЗС-100 и ВЧЗС-100В, отличающиеся друг от друга номинальным током и индуктивностью, устойчивостью и геометрическими параметрами силовой катушки, а также типом элемента настройки и его защиты.
Заградители врезаются в фазный провод линии электропередачи между линейным разъединителем и конденсатором связи. Высокочастотные заградители могут монтироваться в подвесном виде, на опорных конструкциях, в том числе и на конденсаторах связи.
Конденсаторы связи служат для подключения ВЧ аппаратуры к воздушной линии, при этом токи утечки промышленной частоты отводятся через конденсатор связи на землю, минуя аппаратуру высокой частоты. Конденсаторы связи рассчитаны на фазное напряжение (в сети с заземленной нейтралью) и на линейное напряжение (в сети с изолированной нейтралью). В нашей стране выпускаются конденсаторы связи двух типов: СМР (связи, маслонаполненный, с расширителем) и СММ (связи, маслонаполненный, в металлическом корпусе). Для различных напряжений конденсаторы комплектуют из отдельных элементов, соединенных последовательно. Конденсаторы связи могут устанавливаться на железобетонные или металлические опоры высотой около 3 м. Для изоляции нижнего элемента конденсатора типа СМР от тела опоры используют специальные фарфоровые подставки круглого сечения.

Фильтр присоединения служит связующим звеном между конденсатором связи и ВЧ аппаратурой, разделяя линию высокого напряжения и установку слабого тока, каковой является аппаратура уплотнения. Фильтр присоединения обеспечивает тем самым безопасность персонала и защиту аппаратуры от высокого напряжения, так как при заземлении нижней обкладки конденсатора связи образуется путь для токов утечки промышленной частоты. С помощью фильтра присоединения осуществляется согласование волновых сопротивлений линии и высокочастотного кабеля, а также компенсации реактивного сопротивления конденсатора связи в заданной полосе частот. Фильтры присоединения выполняются по трансформаторной и автотрансформаторной схемам и вместе с конденсаторами связи образуют полосовые фильтры.
Наибольшее распространение в организации ВЧ каналов связи по линиям электропередачи предприятия получил фильтр присоединения типа ОФП-4 (см. рис. 19). Фильтр заключен в стальном сварном корпусе с проходным изолятором для присоединения конденсатора связи и кабельной воронкой для ввода ВЧ кабеля. На стенке корпуса крепится разрядник, имеющий удлиненную шпильку для подключения шинки заземления и предназначенный для защиты элементов фильтра присоединения от перенапряжений. Фильтр рассчитан для присоединения ВЧ аппаратуры по схеме фаза-земля в комплекте с конденсаторами связи емкостью 1100 и 2200 пФ. Фильтр устанавливается, как правило, на опоре конденсатора связи и крепится к опоре болтами на высоте 1,6-1,8 м от уровня земли.
Как отмечалось, все переключения в цепях фильтра присоединения производятся при включенном заземляющем ноже, который служит для заземления нижней обкладки конденсатора связи при работе персонала. В качестве заземляющего ножа применяется однополюсный разъединитель для напряжения 6-10 кВ. Операции с заземляющим ножом производятся с помощью изолирующей штанги. Некоторые типы фильтров присоединения имеют смонтированный внутри корпуса заземляющий нож. Для обеспечения безопасности в этом случае должен устанавливаться отдельно стоящий заземляющий нож.
Высокочастотный кабель служит для электрического соединения фильтра присоединения (см. рис. 21) с приемопередающей аппаратурой. При подключении аппаратуры к линии по схеме фаза - земля применяются коаксиальные кабели. Наиболее распространенным является высокочастотный коаксиальный кабель марки РК-75, внутренний проводник (одножильный или многожильный) которого отделен от внешней оплетки изоляцией из высокочастотного диэлектрика. Внешняя экранная оплетка служит обратным проводом. Внешний проводник заключен в защитную изолирующую оболочку.
Высокочастотные характеристики кабеля РК-75, как и обычных кабелей связи, определяются теми же параметрами: волновым сопротивлением, километрическим затуханием и скоростью распространения электромагнитных волн.
Надежную работу ВЧ каналов по ВЛ обеспечивают качественное и регулярное выполнение планово-профилактических работ, предусматривающих целый комплекс работ на оборудовании ВЧ каналов связи по ВЛ. Для выполнения профилактических измерений каналы выводятся из работы. В состав профилактического обслуживания входят плановые проверки аппаратуры и каналов, периодичность которых определяется состоянием аппаратуры, качеством эксплуатационного обслуживания с учетом профилактических работ и устанавливается не реже 1 раза в 3 года. Внеплановые проверки каналов выполняются при изменении ВЧ тракта, повреждений оборудования и при ненадежной работе канала из-за нарушения регламентированных параметров.

МОСКВА, 11 мая - РИА Новости. В книге Владимира Богомолова "Момент истины" о Великой Отечественной Войне часто упоминаются "записки по ВЧ" и аппараты ВЧ-связи, по которым верховный главнокомандующий связывался со штабами. Связь была защищенной, и ее невозможно было подслушать без использования специальных средств. Что это был за тип связи?

"ВЧ-связь", "кремлёвка", АТС-1 - система защищенных каналов связи, которая и по сей день обеспечивает стабильность и конфиденциальность переговоров руководителей государства, министерств, стратегических предприятий. Методы защиты многократно усложнились и усовершенствовались, но задача осталась неизменной: беречь разговоры государственного уровня от посторонних ушей.

В годы Великой Отечественной Войны, по словам маршала И.Х.Баграмяна "без ВЧ-связи не начиналось и не проводилось ни одного значительного военного действия. ВЧ-связь сыграла исключительную роль как средство управления войсками и содействовала выполнению боевых операций". Ей обеспечивались не только штабы, но и командование непосредственно на передовых линиях, на дозорных пунктах, плацдармах. Уже на исходе войны наиболее кратко вклад правительственной связи в победу охарактеризовал прославленный маршал К.К. Рокоссовский: "Использование средств правительственной связи в годы войны произвело революцию в управлении войсками".

В основу правительственной связи, появившейся в 1930-е годы, был положен принцип высокочастотного (ВЧ) телефонирования. Он позволяет передавать человеческий голос, "перенесенный" на более высокие частоты, делая его недоступным для прямого прослушивания и давая возможность передавать несколько переговоров по одному проводу.
Первые опыты с внедрением высокочастотной многоканальной телефонной связи проводились с 1921 г. на Московском заводе "Электросвязь" под руководством В.М. Лебедева. В 1923 г. ученый П.В. Шмаков завершил опыты по одновременной передаче двух телефонных переговоров на высоких частотах и одного на низкой частоте по кабельной линии протяженностью 10 км.
Большой вклад в развитие высокочастотной телефонной связи внес ученый, профессор Павел Андреевич Азбукин. Под его руководством в 1925 г. на Ленинградской научно-испытательной станции была разработана и изготовлена первая отечественная аппаратура ВЧ-связи, которую можно было использовать на медных телефонных проводах.

Чтобы понять принцип телефонной ВЧ-связи, вспомним, что обычный человеческий голос производит колебания воздуха в полосе частот 300-3200 Гц, и поэтому для передачи звука по обычному телефонному каналу необходима выделенная полоса в пределах от 0 до 4 кГц, где звуковые колебания будут преобразовываться в электромагнитные. Прослушать телефонный разговор по простой телефонной линии можно, просто подключив телефонный аппарат, телефонную трубку или динамик к проводу. Но можно пустить по проводу более высокую полосу частот, значительно превышающую частоту голоса - от 10 кГц и выше.

© Иллюстрация РИА Новости. Алина Полянина

© Иллюстрация РИА Новости. Алина Полянина

Это будет так называемый несущий сигнал. И тогда колебания, возникающие от человеческого голоса, можно "спрятать" в изменении его характеристик — частоты, амплитуды, фазы. Эти изменения несущего сигнала и будут передавать звук человеческого голоса, образуя огибающий сигнал. Попытки подслушать разговор, подключившись к линии простым телефонным аппаратом, без специального устройства не получится - будет слышен только высокочастотный сигнал.
Первые линии правительственной ВЧ-связи были протянуты от Москвы в Харьков и Ленинград в 1930 году и вскоре технология распространилась по всей стране. К середине 1941 г. сеть правительственной ВЧ-связи включала в себя 116 станций, 20 объектов, 40 трансляционных пунктов и обслуживала около 600 абонентов. Работы инженеров того времени позволили также запустить в 1930 году первую автоматическую станцию Москвы, которая впоследствии проработала 68 лет.

В годы Великой Отечественной войны Москва ни минуты не оставалась без телефонной связи. Работники музея МГТС показали уникальные экспонаты, которые обеспечивали в тяжелые годы бесперебойное сообщение.

В тот период ученые и инженеры решали задачи по усовершенствованию защиты линий связи и одновременно вели разработки сложной шифрующей аппаратуры. Разработанные системы шифрования были очень высокого уровня и по оценкам руководства армией во многом обеспечили успех воинских операций. Маршал Г.К. Жуков отмечал: "Хорошая работа шифровальщиков помогла выиграть не одно сражение". Сходного мнения придерживался и маршал А.М. Василевский: "Ни одно донесение о готовящихся военно-стратегических операциях нашей армии не стало достоянием фашистских разведок".

Серия FOX предлагает современные решения на основе технологий первичных сетей SDH/PDH, спроектированные и испытанные для эксплуатации в жёстких условиях. Никакие другие мультиплексорные решения не обеспечивают такой широкий спектр специализированных продуктов - от телезащиты до гигабитного Ethernet с использованием технологии SDH и спектрального разделения.

Компания AББ уделяет особое внимание возможности модернизации продуктов для защиты капиталовложений и предлагает эффективные инструменты для технического обслуживания.

Комплексное коммуникационное решение серии FOX состоит из:

  • FOX505:Компактный мультиплексор доступа с пропускной способностью до STM-1.
  • FOX515/FOX615: Мультиплексор доступа с пропускной способностью до STM-4, обеспечивающий работу с широким диапазоном пользовательских интерфейсов для систем передачи данных и голоса. Реализация функций телезащиты и другие особенности, характерные для конкретной области применения, обеспечивают соблюдение всех требований по доступу к данным на предприятии.
  • FOX515H: Дополняет линейку FOX и предназначен для высокоскоростных линий связи.
  • FOX660: Мультисервисная платформа для систем передачи данных.

Все элементы серии FOX515 работают под управлением FOXMAN, унифицированной системы управления сетью компании ABB на основе SNMP. Ее открытая архитектура позволяет осуществлять интеграцию с системами управления сторонних поставщиков, как более высокого, так и более низкого уровня. Графическое отображение сети и управление по методу «указания и щелчка» делает систему FOXMAN идеальным решением для управления TDM и Ethernet на уровнях доступа и передачи данных.

Универсальная цифровая система ВЧ-связи ETL600 R4

ETL600 является современным решением вопроса обеспечения ВЧ-связи по ЛЭП для передачи речевых сигналов, данных и команд защиты по линиям высокого напряжения. Универсальная архитектура аппаратных и программных средств системы ETL600 делает беспредметным и устаревшим выбор между традиционным аналоговым и перспективным цифровым ВЧ-оборудованием. Используя те же самые аппаратные компоненты, пользователь может на месте выбрать цифровой или аналоговый рабочий режим посредством всего лишь нескольких нажатий клавиши мыши. В дополнение к удобству пользования, гибкости применения и беспрецедентной скорости передачи данных система ETL600 также гарантирует безусловную совместимость с существующей технологической средой и хорошо интегрируется в современные цифровые инфраструктуры связи.

Преимущества пользователя

  • Экономичное решение вопроса организации связи, обеспечивающее надежное управление и защиту энергосистемы.
  • Снижение затрат посредством общего резерва аппаратного оборудования и запасных частей для аналоговых и цифровых систем ВЧ-связи по ЛЭП.
  • Гибкая архитектура для легкой интеграции как в традиционное, так и в современное оборудование.
  • Надежная передача сигналов защиты
  • Эффективное использование ограниченных частотных ресурсов посредством гибкого выбора полосы передачи.
  • Резервное решение для выбранных критически-важных коммуникаций, которые обычно реализуются через широкополосные средства связи

Фильтр присоединения MCD80

Модульные устройства MCD80 применяются для соединения выводов устройства ВЧ связи, такого как AББ ETL600, через емкостной трансформатор напряжения к высоковольтным линиям.

Фильтр MCD80 обеспечивает оптимальное согласование импедансов для вывода линии ВЧ-связи, разделение частот и безопасную изоляцию частоты сети 50/60 Гц и переходных перенапряжений. Существует возможность конфигурирования для одно- и многофазной связи фильтрацией верхних частот или полосы пропускания. Устройства MCD80 соответствуют последним стандартам IEC и ANSI.

Основные преимущества фильтров MCD80:

  • Предназначены для работы с любыми типами аппаратуры ВЧ связи
  • Вся линейка фильтров: широкополосные, полосовые, разделительные, «фаза-фаза»Ю «фаза-земля»
  • Максимально возможный выбор полосы пропускания (по спецификации заказчика с шагом 1кГц)
  • Возможность присоединения, как к конденсаторам связи, так и трансформаторам напряжения
  • Широкий диапазон емкостей присоединения 1500пФ-20000пФ
  • Возможность перестройки на месте установки при изменении емкости присоединения в пределах рабочего диапазона емкостей (например, при замене конденсаторов на трансформаторы напряжения)
  • Низкое вносимое затухание в полосе пропускания (менее 1дБ)
  • Возможно параллельное подключение к одному ПФ до 9 терминалов мощностью 80 Вт по схеме фаза-земля и до 10 терминалов по схеме фаза-фаза
  • Встроенный однополюсный разъединитель (выключатель заземления)


ВЧ заградители для ВЛ-DLTC

Для защиты ВЧ-заградителей типа доступны два типа DLTC ограничителей перенапряжения.

Малые и среднеразмерные ВЧ-заградители оборудованы стандартными ограничителями перенапряжения AББ Polim-D без дуговых разрядников.

Крупные заградители оборудованы ограничителями ABB MVT, которые не имеют дугового разрядника и специально разработаны для использования с заградителями AББ. В них используются такие же чрезвычайно нелинейные металлооксидные варисторы (MO ограничители), что и в станционных ограничителях.

При проектировании блока настройки учитывается внутренняя утечка MO ограничителя. Металлооксидные ограничители перенапряжения AББ специально спроектированы для эксплуатации в сильных электромагнитных полях, которые часто присутствуют в ВЧ-заградителях линий связи по ЛЭП. В частности, они не содержат лишних металлических частей, в которых магнитное поле может индуцировать вихревые токи и вызвать недопустимое увеличение температуры. Модификация металлооксидных ограничителей перенапряжения для условий эксплуатации в заградителях на линиях ЛЭП была необходимой, так как компания AББ производит такие устройства для станций и полностью осведомлена о проблемах, которые возникают на практике. Ограничители перенапряжения, используемые в заградителях на линиях ЛЭП, имеют номинальный ток 10 кА.


Особенности и преимущества

Принципиальные преимущества ВЧ-заградителей линий ВЧ-связи типа DLTC

Информация с сайта

Аппаратура высокочастотной связи с цифровой обработкой сигналов (АВЦ) разработана фирмой “РАДИС Лтд”, г. Зеленоград (Москва) в соответствии с техническим заданием, утвержденным ЦДУ ЕЭС России*. АВЦ принята и рекомендована к производству межведомственной комиссией ОАО “ФСК ЕЭС” в июле 2003г, имеет сертификат Госстандарта России. Аппаратура производится фирмой “РАДИС Лтд” с 2004 г.
* В настоящее время ОАО “СО-ЦДУ ЕЭС”.

Назначение и возможности

АВЦ предназначена для организации 1, 2, 3 или 4-х каналов телефонной связи, телемеханической информации и передачи данных по ЛЭП 35-500 кВ между диспетчерским пунктом района или предприятия электрических сетей и подстанциями либо любыми объектами, необходимыми для диспетчерского и технологического управления в энергосистемах.

В каждом канале может быть организована телефонная связь с возможностью передачи в надтональном спектре телемеханической информации встроенными или внешними модемами либо передача данных с помощью встроенного или внешнего модема пользователя.

Модификации АВЦ

Совмещенный вариант

терминал АВЦ-С

Исполнение

В АВЦ широко используются методы и средства цифровой обработки сигналов, что позволяет обеспечить точность, стабильность, технологичность и высокую надежность аппаратуры. Входящие в состав АВЦ модулятор/демодулятор АМ ОБП, трансмультиплексор, адаптивные эквалайзеры, встроенные модемы телемеханики и служебные модемы сигналов управления выполнены с применением сигнальных процессоров, ПЛИС и микроконтроллеров, а телефонные автоматики и блок управления реализованы на базе микроконтроллеров. В качестве встроенного модема для передачи данных в канале используется модем STF/CF519C фирмы “Аналитик ”.

Технические характеристики

Число каналов 4, 3, 2 или 1
Диапазон рабочих частот 36-1000 кГц
Номинальная полоса частот одного направления передачи(приема):
- для одноканальной

4 кГц

- для двухканальной 8 кГц
- для трехканальной 12 кГц
16 кГц
Минимальный разнос частот между краями номинальных полос передачи и приема:
- для одно- и двухканальной 8 кГц
(в диапазоне до 500 кГц)
- для трехканальной 12 кГц
(в диапазоне до 500 кГц)
- для четырехканальной аппаратуры 16 кГц
(в диапазоне до 500 кГц)
- одно-, двух-, трех и четырехканальной аппаратуры 16 кГц
(в диапазоне
от 500 до 1000 кГц)
Максимальная пиковая мощность передатчика 40 Вт
Чувствительность приемника -25 дБм
Избирательность приемного тракта удовлетворяет требованиям МЭК 495
Диапазон регулировки АРУ в приемнике 40 дБ
Число встроенных модемов телемеханики (скорость 200, 600 бод) в каждом канале
- на скорость 200 Бод 2
- на скорость 600 Бод 1
Число подключаемых внешних модемов телемеханики в каждом канале Не более 2-х
Число встроенных модемов для передачи данных
(скорость до 24,4 кбит/c)
До 4-х
Число подключаемых внешних модемов для передачи данных До 4-х
Номинальное сопротивление для ВЧ-выхода
- неуравновешенного 75 Ом
- уравновешенного 150 Ом
Диапазон рабочих температур 0…+45°С
Питание 220 В,50 Гц

Примечание: при уравновешенном выходе средняя точка может соединяться с землей непосредственно или через резистор 75 Ом мощностью 10Вт.

Краткое описание

Терминал АВЦ-НЧ устанавливается на диспетчерском пункте, а АВЦ-ВЧ - на опорной или узловой подстанции. Связь между ними осуществляется по двум телефонным парам. Полосы частот, занимаемые каждым каналом связи:

Перекрываемое затухание между терминалами АВЦ-НЧ и АВЦ-ВЧ не более 20 дБ на максимальной частоте канала (характеристическое сопротивление линии связи 150 Ом).

Эффективная полоса пропускания каждого канала в АВЦ 0,3-3,4 кГц, причем она может быть использована:

Сигналы телемеханики передаются с помощью встроенных модемов (два на скорость 200 Бод, средние частоты 2,72 и 3,22 кГц или один на скорость 600 Бод, средняя частота 3 кГц) или внешних модемов пользователя.
Передача данных осуществляется с помощью встроенного модема STF/CF519C (в зависимости от параметров линии скорость может достигать 24,4 кбит/с) или внешнего модема пользователя. Это дает возможность организации до 4 каналов межмашинного обмена.
В тракте приема АВЦ-НЧ (АВЦ-С) предусмотрена полуавтоматическая коррекция частотной характеристики остаточного затухания каждого канала.
В каждом телефонном канале АВЦ имеется возможность включения компандера.


Ячейка телефонной автоматики

АВЦ-НЧ (АВЦ-С) содержит встроенные устройства автоматического соединения абонентов (телефонные автоматики), которые позволяют подключение:

Если канал используется для передачи данных, то ячейка телефонной автоматики заменяется ячейкой встроенных модемов STF/CF519C.


Ячейка модемов STF/CF519C

В АВЦ-НЧ и АВЦ-С имеется блок управления, который с помощью служебного модема каждого канала (скорость передачи 100 Бод, средняя частота 3,6 кГц) осуществляет передачу команд и непрерывный контроль наличия связи между местным и удаленным терминалами. При пропадании связи обеспечивается выдача звукового сигнала и замыкание контактов реле внешней сигнализации. В энергонезависимой памяти блока ведется журнал событий (включение/выключение и готовность аппаратуры, “пропадание” канала связи и т.п.) на 512 записей.

Необходимые режимы АВЦ устанавливаются при помощи выносного пульта управления или внешнего компьютера, подключаемого через интерфейс RS-232 к блоку управления. Пульт позволяет снять диаграмму уровней и характеристики остаточного затухания канала, выполнить необходимую коррекцию частотной характеристики и оценить уровень характеристических искажений встроенных модемов телемеханики.

Рабочая частота аппаратуры может быть перестроена пользователем в пределах одного из поддиапазонов: 36-125, 125-500 и 500-1000 кГц. Шаг перестройки - 1 кГц.

Схемы организации каналов связи

Помимо прямого канала связи (“точка-точка”) между полукомплектами АВЦ возможны более сложные схемы организации каналов связи (типа “звезда”). Так, двухканальный диспетчерский полукомплект позволяет организовать связь с двумя одноканальными полукомплектами, установленными в контролируемых пунктах, а четырехканальный - с двумя двухканальными или четырьмя одноканальными полукомплектами.

Возможны и другие подобные конфигурации каналов связи. C помощью дополнительного терминала АВЦ-ВЧ аппаратура обеспечивает организацию четырехпроводного переприема без отбора каналов.

Кроме того, могут быть предоставлены следующие возможности:

С помощью лишь терминала АВЦ-ВЧ организуется работа совместно с внешним модемом, имеющим полосу 4, 8, 12 или 16 кГц в диапазоне номинальных частот от 0 до 80 кГц, что позволяет создавать комплексы цифровой высокочастотной связи. Например, на базе терминала АВЦ-ВЧ и модемов М-АСП-ПГ-ЛЭП фирмы "Зелакс " можно организовать связь со скоростью передачи данных до 80 кбит/с в полосе 12 кГц и до 24 кбит/с в полосе 4 кГц.

В номинальной полосе 16 кГц в АВЦ организуются два канала, а именно 1-й с полосой 4 кГц для телефонной связи и 2-й с полосой 12 кГц для передачи данных аппаратурой пользователя.

Организуется работа до четырех одноканальных абонентских полукомплектов АВЦ на контролируемых пунктах с одноканальным диспетчерским полукомплектом АВЦ. При полосе телефонного канала 0,3-2,4 кГц аппаратура предоставит по одному дуплексному каналу связи для обмена телемеханической информацией со скоростью 100 Бод между диспетчерским и каждым полукомплектом на контролируемом пункте. При использовании внешних модемов со скоростью больше 100 Бод возможен только циклический или спорадический обмен телемеханической информацией между диспетчерским и абонентским полукомплектами.

Массогабаритные параметры аппаратуры

Наименование

Глубина, мм

Высота, мм

Установка

Аппаратура может быть установлена на стеллаже (до нескольких вертикальных рядов), в 19” стойке или закреплена на стене. Все кабели для внешних соединений подключаются спереди. По отдельному заказу поставляется промежуточный клеммник для подключения кабелей.

Условия окружающей среды

АВЦ предназначена для непрерывной круглосуточной работы в стационарных условиях, в закрытых помещениях без постоянного обслуживающего персонала при температуре от 0 до +45С О и относительной влажности вплоть до 85%. Работоспособность аппаратуры сохраняется при температуре окружающей среды до -25С О.

Для передачи информации между защитами и автоматикой по концам высоковольтной линии используется канал, созданный для токов высокой частоты по схеме соединения “фаза–земля”.

В составе тракта включается одна фаза действующей ВЛ, которая через конденсаторы связи на подстанциях соединяется с землей для создания замкнутого контура ВЧ токам.

Наиболее часто на линии используют две удаленные фазы “А” и “С” для передачи по одной из них с подстанции команд частоты №1, а по второй – приема на частоте №2.


Устройство и назначение канала ВЧ связи . На каждой подстанции устанавливаются передатчики и приемники высокочастотных сигналов. В данном случае современная аппаратура ВЧ приемопередатчиков выполнена на микропроцессорной базе терминалов ETL640 v.03.32 копании АВВ.

Для обработки сигналов на каждой частоте изготавливается свой приемопередатчик. Поэтому для одной подстанции требуется 2 комплекта терминалов, настроенных на одновременное принятие и передачу сигналов по разным фазам ВЛ.

Подключением ВЧ приемопередатчика к ВЛ занимается специальная аппаратура, отделяющее высокое напряжение от слаботочного оборудования и создающая магистраль для передачи ВЧ сигналов. Ее комплектуют:

Высоковольтным конденсатором связи (КС);
- фильтром присоединения (ФП);
- высокочастотным заградителем (ВЗ);
- ВЧ кабелем.

Назначение высоковольтного конденсатора связи состоит в надежном изолировании от земли транспортируемых по ВЛ мощностей с промышленной частотой и пропускании через себя высокочастотных токов.

На фотоснимке рассматриваемой линии установлено 3 конденсатора с ФП в каждой фазе. Они используются для связи с оборудованием дальнего конца линии в целях:

1. Передачи команд РЗ и ПА;
2. Приема команд РЗ и ПА;
3. Работы ВЧ аппаратуры службы связи.

Для отделения ВЧ сигнала от высоковольтного оборудования подстанции в фазный провод ВЛ высокого напряжения монтируется ВЧ заградитель. который ограничивает величину потерь ВЧ сигналов через параллельные контуры.

Сквозь него хорошо проходят токи промышленной частоты и не пропускаются высокочастотные. ВЗ состоит из реактора (силовой катушки), пропускающего рабочий ток линии, и элементов настройки, параллельно подключенных с реактором.

Для согласования параметров входных сопротивлений ВЧ кабеля и линии используется фильтр присоединения, который выполняется моделью воздушного трансформатора с отпайками от обмоток, позволяющих выполнять необходимые регулировки. ВЧ кабель соединяет фильтр присоединения с приемопередатчиком.


Высокочастотные приёмопередатчики (ETL640), назначение . Приёмопередатчики типа ETL640 (ПРМ/ПРД) предназначены для передачи и приема ВЧ сигналов в виде команд, формируемых релейной защитой (РЗ) и противоаварийной автоматикой (ПА) на противоположный конец ВЛ.


Проверка исправности ВЧ канала . Сложное оборудование тракта ВЧ передачи располагается на расстояниях в сотни километров, требует контроля и поддержания его целостности. Приёмопередатчики ETL640 по концам ВЛ постоянно в обычном режиме эксплуатации обмениваются (осуществляют передачу/приём) сигналами контрольной частоты.

При уменьшении сигнала по величине или изменении его частоты сверх допустимых пределов срабатывает сигнализация неисправности. После восстановления работоспособности приёмопередатчик в автоматическом режиме возвращается к нормальному режиму работы.


Обмен сигналами . Передача и прием сигналов производится на выделенных частотах, к примеру:

Комплекс на фазе “А”: Тх: 470 + 4 кГц, Rx: 474 + 4 кГц;
- комплекс на фазе “С”: Тх: 502 + 4 кГц, Rx: 506 + 4 кГц.

Аппаратура ETL640 предназначена для круглосуточной постоянной работы в условиях отапливаемых ОПУ.


Прием и передача команд . Терминалы №1 и №2 комплексов ETL640 принимают и передают по 16 команд от РЗ и ПА.


Команды приемопередатчиков ETL640 . Типовые команды приемопередатчика любого комплекса ETL640 могут иметь вид:

1. Отключение 3-х фаз ВЛ-330 кВ с дальнего конца ВЛ без контроля с запретом ТАПВ и пуском от УРОВ или ЗНР комплекса №… REL-670;

2. Отключение 3-х фаз ВЛ-330 кВ с дальнего конца ВЛ с контролем измерительными органами Z3 ДЗ и 3-й ступени НТЗНП комплекса №… защит REL670 без запрета ТАПВ и пуском от фактора 3-х фазного отключения комплекса №… защит REL;

3. Телеускорение ДЗ с действием на одно или 3-х фазное отключение ВЛ-330 кВ с дальнего конца ВЛ, с контролем параметров ступени Z3 ДЗ комплекса №… защит REL670 с ОАПВ/ТАПВ и пуском от ступени Z3 ДЗ комплекса №… защит REL-670;

4. Телеускорение НТЗНП с действием на одно или 3-х фазное отключение ВЛ-330 кВ с дальнего конца ВЛ с контролем параметров ступени Z3 НТЗНП комплекса №… защит REL670 с ОАПВ/ТАПВ и пуском от измерительного органа 3 ступени НТЗНП комплекса №… защит REL670;

5. Фиксация отключения линии со своей стороны ВЛ и действием в схему логики АФОЛ комплекса №… защит РЗА. Пуск от выходного реле схемы логики АФОЛ комплекса №… защит РЗА при отключении линии со своей стороны;

6. III очередь ОН, действующая на пуск:
- 5-й команды АКАП прд 232 кГц ВЛ №…;
- 2-й команды АКПА прд 286 кГц ВЛ №…;
- 4-й команды АНКА прд 342 кГц ВЛ №….

7. Фиксация включения линии со своей стороны и действием в схему логики АФОЛ комплекса №… защит РЗА ВЛ с пуском от выходного реле схемы логики АФОЛ комплекса №… защит РЗА ВЛ-330 при включении со своей стороны;

8. Пуск от 1-й ступени схемы САПАХ … с запуском:
- 6-й команды АНКА прд 348 кГц ВЛ №…;
- 4-й команды АКАП прд 122 кГц ВЛ №….

9. 3-я очередь отключения нагрузки с действием …

Каждая команда формируется для конкретных условий ВЛ с учетом ее конфигурации в электрической сети и эксплуатационных условий. Выходные реле ВЧ аппаратуры и переключающие устройства расположены в отдельном шкафу.


Цепи сигнализации ВЛ . Сигнализация терминалов. На лицевой панели терминалов расположено 3 светодиода, отражающих состояние самого устройства REL670 и 15 светодиодов, указывающих на срабатывания защит, неисправности и состояние оперативных переключателей.

Светодиоды терминалов REL670 (защита 1-го и 2-го комплексов) и REC670 (автоматика и УРОВ 1-го и 2-го комплекса В1 и В2) первых шести номеров имеют красную окраску. Светодиоды с номерами от 7 до 15 имеют желтый цвет.

Светодиоды статусной индикации. Над блоком ЖКД терминалов REС670 и REL670 вставлены 3 светодиодных индикатора “Ready”, “Start” и “Trip”. Для обозначения разной информации они светятся разным цветом. Зеленый цвет индикатора обозначает:

Работу устройств - устойчивым свечением;
- внутреннее повреждение - миганием;
- отсутствие питания оперативного тока - затемнением цвета.

Желтый цвет индикатора обозначает:

Пуск аварийного регистратора - устойчивым свечением;;
- нахождение терминала в тестовом режиме - сопровождается миганием.

Красный цвет индикатора обозначает выдачу команды аварийного отключения (устойчивое свечение).


Таблица светодиодной сигнализации терминала REС670

Сброс и опробование сигнализации . Сброс сигнализации, счетчиков учета приема и передачи ВЧ команд и информации по зонам ДЗ и НТЗНП для терминала производится от нажатия на кнопку SB1 (сброс сигнализации) на передней стороне шкафа.

Для опробования светодиодов терминалов REL670 (REС670) требуется нажать и удерживать дольше 5 секунд кнопку SB1.


Общепанельная световая сигнализация . С лицевой стороны шкафов REС670 находятся лампы:
- HLW – работы АПВ, ЗНФ, УРОВ;
- HLR2 – неисправность комплексов автоматики и УРОВ В-1или В-2.

С лицевой стороны шкафов REL670 находятся лампы:
- HLW – работы защит;
- HLR1 – комплекс защит выведен;
- HLR2 – неисправность комплексов защит.

С лицевой стороне шкафов ETL находятся лампы сигнализации:
- HLW1 – неисправность ETL 1-го комплекса;
- HLW2 – неисправность ETL 2-го комплекса.


Перспективы развития оборудования воздушных ЛЭП . Проверенные временем воздушные выключатели для высоковольтных ЛЭП постепенно вытесняются современными элегазовыми конструкциями, которым не требуется постоянная работа мощных компрессорных станций для поддержания давления воздуха в баках и воздушных магистралях.

Громоздкие аналоговые устройства РЗА и ПА для высоковольтного оборудования, требующие пристального внимания со стороны обслуживающего персонала, заменяются новыми микропроцессорными терминалами.